An objective approach to assess colonic pain in mice using colonometry

Author:

Qiao Liya Y.ORCID,Madar Jonathan

Abstract

The present study presents a non-surgical approach to assess colonic mechanical sensitivity in mice using colonometry, a technique in which colonic stretch-reflex contractions are measured by recording intracolonic pressures during saline infusion into the distal colon in a constant rate. Colonometrical recording has been used to assess colonic function in healthy individuals and patients with neurological disorders. Here we found that colonometry can also be implemented in mice, with an optimal saline infusion rate of 1.2 mL/h. Colonometrograms showed intermittent pressure rises that was caused by periodical colonic contractions. In the sceneries of colonic hypersensitivity that was generated post 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colonic inflammation, following chemogenetic activation of primary afferent neurons, or immediately after noxious stimulation of the colon by colorectal distension (CRD), the amplitude of intracolonic pressure (AICP) was markedly elevated which was accompanied by a faster pressure rising (ΔP/Δt). Colonic hypersensitivity-associated AICP elevation was a result of the enhanced strength of colonic stretch-reflex contraction which reflected the heightened activity of the colonic sensory reflex pathways. The increased value of ΔP/Δt in colonic hypersensitivity indicated a lower threshold of colonic mechanical sensation by which colonic stretch-reflex contraction was elicited by a smaller saline infusion volume during a shorter period of infusion time. Chemogenetic inhibition of primary afferent pathway that was governed by Nav1.8-expressing cells attenuated TNBS-induced up-regulations of AICP, ΔP/Δt, and colonic pain behavior in response to CRD. These findings support that colonometrograms can be used for analysis of colonic pain in mice.

Funder

National Institutes of Health

National Institute of Diabetes and Digestive and Kidney Diseases

Commonwealth of Virginia

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3