Long-term effects of land-use change on water resources in urbanizing watersheds

Author:

Talib AmmaraORCID,Randhir Timothy O.

Abstract

The changes in energy balance resulting from land-use change may significantly affect the amount and timing of water loss to the atmosphere as evapotranspiration (ET). Also, these will impact water fluxes in the watershed system, influencing runoff rate, flow volume, intensity, and frequency of floods. During the past century, land-use change in the SuAsCo (Sudbury-Assabet and Concord) watershed has altered basin hydrology, sediment, and nutrient load that is detrimental to water resources in SuAsCo. This study uses an integrated physically-based model Hydrological Simulation Program-FORTRAN (HSPF), along with Land Transformation Model (LTM), to assess predicted temporal and spatial changes in water, nutrient, and sediment yields for future land-use scenarios of 2035, 2065, and 2100. Results showed that a 75% increase in effective impervious area and a 50% decrease in forest area in 2100 (from 2005 baseline levels) are projected to cause a 3% increase in annual streamflow and a 69% increase in total yearly mean surface runoff. The average annual total suspended solid (TSS) yield at the watershed outlet is estimated to increase by 54% in 2100. An increase of 12% and 13% concentrations of average annual total phosphorus (TP) and total nitrogen (TN) are predicted by 2100 due to urban expansion and increased runoff volume. This integrated modeling approach will inform watershed managers and landowners about critical areas of the SuAsCo watershed to apply best management practices (BMPs) to mitigate the effects of land-use land cover (LULC) change.

Funder

National Institute of Food and Agriculture

Fulbright Association

Office of Integrative Activities

Publisher

Public Library of Science (PLoS)

Reference124 articles.

1. Process controls of water balance variability in a large semi-arid catchment: Downward approach to hydrological model development;C Jothityangkoon;J Hydrol,2001

2. Reidsma P, Tekelenburg T, Van Den Berg M, Alkemade R. Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. In: Agriculture, Ecosystems and Environment. 2006.

3. Impacts of land-use change on hydrologic responses in the Great Lakes region;D Mao;J Hydrol,2009

4. The impact of pre-restoration land-use and disturbance on sediment structure, hydrology and the sediment geochemical environment in restored saltmarshes;KL Spencer;Sci Total Environ,2017

5. Influence of land use change on nitrate sources and pollutant enrichment in surface and groundwater of a growing urban area in Tanzania;CL Mallya;Environ Earth Sci,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3