Towards skin-acetone monitors with selective sensitivity: Dynamics of PANI-CA films

Author:

Annerino AnthonyORCID,Faltas MichaelORCID,Srinivasan ManojORCID,Gouma Pelagia-Irene

Abstract

Most research aimed at measuring biomarkers on the skin is only concerned with sensing chemicals in sweat using electrical signals, but these methods are not truly non-invasive nor non-intrusive because they require substantial amounts of sweat to get a reading. This project aims to create a truly non-invasive wearable sensor that continuously detects the gaseous acetone (a biomarker related to metabolic disorders) that ambiently comes out of the skin. Composite films of polyaniline and cellulose acetate, exhibiting chemo-mechanical actuation upon exposure to gaseous acetone, were tested in the headspaces above multiple solutions containing acetone, ethanol, and water to gauge response sensitivity, selectivity, and repeatability. The bending of the films in response to exposures to these environments was tracked by an automatic video processing code, which was found to out-perform an off-the-shelf deep neural network-based tracker. Using principal component analysis, we showed that the film bending is low dimensional with over 90% of the shape changes being captured with just two parameters. We constructed forward models to predict shape changes from the known exposure history and found that a linear model can explain 40% of the observed variance in film tip angle changes. We constructed inverse models, going from third order fits of shape changes to acetone concentrations where about 45% of the acetone variation and about 30% of ethanol variation are captured by linear models, and non-linear models did not perform substantially better. This suggests there is sufficient sensitivity and inherent selectivity of the films. These models, however, provide evidence for substantial hysteretic or long-time-scale responses of the PANI films, seemingly due to the presence of water. Further experiments will allow more accurate discrimination of unknown exposure environments. Nevertheless, the sensor will operate with high selectivity in low sweat body locations, like behind the ear or on the nails.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3