Detection of lymph node metastasis in non-small cell lung cancer using the new system of one-step nucleic acid amplification assay

Author:

Ose NaokoORCID,Takeuchi Yukiyasu,Sakamaki Yasushi,Kadota Yoshihisa,Urasaki Koji,Tsuji Hiromi,Kawahara Kunimitsu,Noguchi Mayuko,Shintani Yasushi

Abstract

Introduction The prognosis of non-small cell lung cancer greatly depends on the presence of lymph node metastasis, which limits the need for surgery and adjuvant therapy for advanced cancer. One-step nucleic acid amplification of cytokeratin19 (CK19) mRNA was used to detect lymph node metastasis. Automated Gene Amplification Detector RD-200 and the LYNOAMP CK19 gene amplification reagent as components of the new one-step nucleic acid amplification system, which has increased gene amplification efficiency by improving the reagent composition, have shorter preprocessing and measurement times than conventional systems. We aimed to compare the clinical performance of the new system with that of histopathology and the conventional system. Materials and methods 199 lymph nodes from 58 non-small cell lung cancer patients who underwent lymph node dissection were examined intraoperatively using the new system, conventional system, and histopathology. Results Lymph node metastasis was diagnosed in 32, 42, and 44 patients using histopathological analysis, the new system, and the conventional system, respectively. Compared with histopathological analysis, the concordance rate, sensitivity, specificity, positive predictive value, and negative predictive value of the new system were 92.0%, 90.6%, 92.2%, 69.0%, and 98.1%, respectively, and compared with the conventional system, the values were 95.0%, 86.4%, 97.4%, 90.5%, and 96.2%, respectively. Conclusion The clinical performance of the new one-step nucleic acid amplification system in detecting lymph node metastasis of lung cancer is comparable to that of histopathology and the conventional system; its performance was sufficient for determining the appropriate clinical treatment. The new rapid system can be effectively utilized during lung cancer treatment intraoperatively and postoperatively.

Funder

Sysmex Corporation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3