A feature transferring workflow between data-poor compounds in various tasks

Author:

Sun Xiaofei,Zhu Jingyuan,Chen BinORCID,You Hengzhi,Xu Huiqing

Abstract

Compound screening by in silico approaches has advantages in identifying high-activity leading compounds and can predict the safety of the drug. A key challenge is that the number of observations of drug activity and toxicity accumulation varies by target in different datasets, some of which are more understudied than others. Owing to an overall insufficiency and imbalance of drug data, it is hard to accurately predict drug activity and toxicity of multiple tasks by the existing models. To solve this problem, this paper proposed a two-stage transfer learning workflow to develop a novel prediction model, which can accurately predict drug activity and toxicity of the targets with insufficient observations. We built a balanced dataset based on the Tox21 dataset and developed a drug activity and toxicity prediction model based on Siamese networks and graph convolution to produce multitasking output. We also took advantage of transfer learning from data-rich targets to data-poor targets. We showed greater accuracy in predicting the activity and toxicity of compounds to targets with rich data and poor data. In Tox21, a relatively rich dataset, the prediction model accuracy for classification tasks was 0.877 AUROC. In the other five unbalanced datasets, we also found that transfer learning strategies brought the accuracy of models to a higher level in understudied targets. Our models can overcome the imbalance in target data and predict the compound activity and toxicity of understudied targets to help prioritize upcoming biological experiments.

Funder

Shenzhen Science and Technology Research Fund

Talent Development Starting Fund from Shenzhen Government

Guangdong Province Basic and Applied Basic Research Fund Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Recent Developments of In Silico Predictions of Intestinal Absorption and Oral Bioavailability;TJ Hou;CCHTS,2009

2. Artificial Intelligence for Drug Toxicity and Safety;AO Basile;Trends Pharmacol Sci,2019

3. Improving Small Molecule Virtual Screening Strategies for the next Generation of Therapeutics;BM Wingert;Curr Opin Chem Biol,2018

4. Virtual Screening Meets Deep Learning;PS Javier;Curr Comput-aid Drug,2019

5. The Light and Dark Sides of Virtual Screening: What Is There to Know?;A Gimeno;IJMS,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying the Benefits of Imputation over QSAR Methods in Toxicology Data Modeling;Journal of Chemical Information and Modeling;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3