Pattern of tamoxifen-induced Tie2 deletion in endothelial cells in mature blood vessels using endo SCL-Cre-ERT transgenic mice

Author:

Zwiers Peter J.ORCID,Jongman Rianne M.,Kuiper Timara,Moser Jill,Stan Radu V.,Göthert Joachim R.,van Meurs Matijs,Popa Eliane R.,Molema GrietjeORCID

Abstract

Tyrosine-protein kinase receptor Tie2, also known as Tunica interna Endothelial cell Kinase or TEK plays a prominent role in endothelial responses to angiogenic and inflammatory stimuli. Here we generated a novel inducible Tie2 knockout mouse model, which targets mature (micro)vascular endothelium, enabling the study of the organ-specific contribution of Tie2 to these responses. Mice with floxed Tie2 exon 9 alleles (Tie2floxed/floxed) were crossed with end-SCL-Cre-ERT transgenic mice, generating offspring in which Tie2 exon 9 is deleted in the endothelial compartment upon tamoxifen-induced activation of Cre-recombinase (Tie2ΔE9). Successful deletion of Tie2 exon 9 in kidney, lung, heart, aorta, and liver, was accompanied by a heterogeneous, organ-dependent reduction in Tie2 mRNA and protein expression. Microvascular compartment-specific reduction in Tie2 mRNA and protein occurred in arterioles of all studied organs, in renal glomeruli, and in lung capillaries. In kidney, lung, and heart, reduced Tie2 expression was accompanied by a reduction in Tie1 mRNA expression. The heterogeneous, organ- and microvascular compartment-dependent knockout pattern of Tie2 in the Tie2floxed/floxed;end-SCL-Cre-ERT mouse model suggests that future studies using similar knockout strategies should include a meticulous analysis of the knockout extent of the gene of interest, prior to studying its role in pathological conditions, so that proper conclusions can be drawn.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. Angiopoietin-2 promotes inflammatory activation of human macrophages and is essential for murine experimental arthritis;S Krausz;Ann Rheum Dis,2012

2. The Selective Tie2 Inhibitor Rebastinib Blocks Recruitment and Function of Tie2 Hi Macrophages in Breast Cancer and Pancreatic Neuroendocrine Tumors;AS Harney;Mol Cancer Ther,2017

3. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors;DJ Dumont;Oncogene,1992

4. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains;J Partanen;Mol Cell Biol,1992

5. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems;L Eklund;Clin Sci,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3