Using machine learning as a surrogate model for agent-based simulations

Author:

Angione ClaudioORCID,Silverman EricORCID,Yaneske Elisabeth

Abstract

In this proof-of-concept work, we evaluate the performance of multiple machine-learning methods as surrogate models for use in the analysis of agent-based models (ABMs). Analysing agent-based modelling outputs can be challenging, as the relationships between input parameters can be non-linear or even chaotic even in relatively simple models, and each model run can require significant CPU time. Surrogate modelling, in which a statistical model of the ABM is constructed to facilitate detailed model analyses, has been proposed as an alternative to computationally costly Monte Carlo methods. Here we compare multiple machine-learning methods for ABM surrogate modelling in order to determine the approaches best suited as a surrogate for modelling the complex behaviour of ABMs. Our results suggest that, in most scenarios, artificial neural networks (ANNs) and gradient-boosted trees outperform Gaussian process surrogates, currently the most commonly used method for the surrogate modelling of complex computational models. ANNs produced the most accurate model replications in scenarios with high numbers of model runs, although training times were longer than the other methods. We propose that agent-based modelling would benefit from using machine-learning methods for surrogate modelling, as this can facilitate more robust sensitivity analyses for the models while also reducing CPU time consumption when calibrating and analysing the simulation.

Funder

UKRI Research England

Children’s Liver Disease Foundation

UK Prevention Research Partnership

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference60 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporating temporal information during feature engineering bolsters emulation of spatio-temporal emergence;2024-01-12

2. Utilizing MATLAB machine learning models to categorize transient events in a nuclear power plant using generic pressurized water reactor simulator;Nuclear Engineering and Design;2023-12

3. Reinforcement Learning for Combining Search Methods in the Calibration of Economic ABMs;4th ACM International Conference on AI in Finance;2023-11-25

4. A modelling and updating approach of digital twin based on surrogate model to rapidly evaluate product performance;The International Journal of Advanced Manufacturing Technology;2023-11-14

5. RDARuntime: An OS for AI Accelerators;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3