Seasonal variation influences flavonoid biosynthesis path and content, and antioxidant activity of metabolites in Tetrastigma hemsleyanum Diels & Gilg

Author:

Shi YanShou,Yang Li,Yu MinFen,Li ZhaoHui,Ke ZhiJun,Qian XiaoHua,Ruan Xiao,He LiPing,Wei Feng,Zhao YingXian,Wang QiangORCID

Abstract

Environmental conditions contribute to plant growth and metabolism. This study aimed to determine a suitable environment and climate for large-scale artificial cultivation of an endangered plant, Tetrastigma hemsleyanum, by investigating the seasonal variations influencing the flavonoid biosynthetic selectivity and antioxidant activity of its major metabolites. Under conditions of precipitation (2.0~6.6 mm), temperature (17.5~24.1°C), humidity (67.3~80.2%), and sunshine duration (3.4~5.8 h) from April to May, the total flavonoid content in T. hemsleyanum reached higher levels between 281.3 and 392.8 μg/g. In the second half of April, the production selectivity (PS) of isoorientin (IsoO), orientin (Or), rutin (Rut), isoquercitin (IsoQ), kaempferol-3-O-rutinoside (Km3rut), astragalin (Ast), quercetin (Qu), apigenin (Ap), and kaempferol (Km) were 0.30, 0.06, 0.07, 0.07, 0.00, 0.04, 0.38, 0.05, and 0.03, respectively. Naringenin was dehydrogenated or hydroxylated to initiate two parallel reaction pathways for flavonoid biosynthesis in T. hemsleyanum: path I subsequently generated flavone derivatives including apigenin, luteolin, orientin, and isoorientin, and path II subsequently generated flavonol derivatives including Km, Qu, IsoQ, Rut, Ast, and Km3rut. The reaction selectivity of path II (RPSII) from January 1 to September 30 was considerably higher than that of path I (RPSI), except for March 16–31. In addition, either the content or antioxidant activity of three major metabolites in T. hemsleyanum followed the order of phenolic compounds > polysaccharides > sterols, and exhibited dynamic correlations with environmental factors. Naringenin favored hydroxylation and derived six flavonol compounds from January to September, and favored dehydrogenation and derived three flavone compounds from October to December. In most months of a year, Km preferentially favored hydroxylation rather than glucosylation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Science and Technology Bureau of Ningbo

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3