Activation of plant immunity by exposure to dinitrogen pentoxide gas generated from air using plasma technology

Author:

Tsukidate Daiki,Takashima KeisukeORCID,Sasaki ShotaORCID,Miyashita Shuhei,Kaneko Toshiro,Takahashi HidekiORCID,Ando SugihiroORCID

Abstract

Reactive nitrogen species (RNS) play an important role in plant immunity as signaling factors. We previously developed a plasma technology to partially convert air molecules into dinitrogen pentoxide (N2O5), an RNS whose physiological action is poorly understood. To reveal the function of N2O5 gas in plant immunity, Arabidopsis thaliana was exposed to plasma-generated N2O5 gas once (20 s) per day for 3 days, and inoculated with Botrytis cinerea, Pseudomonas syringae pv. tomato DC3000 (Pst), or cucumber mosaic virus strain yellow (CMV(Y)) at 24 h after the final N2O5 gas exposure. Lesion size with B. cinerea infection was significantly (P < 0.05) reduced by exposure to N2O5 gas. Propagation of CMV(Y) was suppressed in plants exposed to N2O5 gas compared with plants exposed to the air control. However, proliferation of Pst in the N2O5-gas-exposed plants was almost the same as in the air control plants. These results suggested that N2O5 gas exposure could control plant disease depending on the type of pathogen. Furthermore, changes in gene expression at 24 h after the final N2O5 gas exposure were analyzed by RNA-Seq. Based on the gene ontology analysis, jasmonic acid and ethylene signaling pathways were activated by exposure of Arabidopsis plants to N2O5 gas. A time course experiment with qRT-PCR revealed that the mRNA expression of the transcription factor genes, WRKY25, WRKY26, WRKY33, and genes for tryptophan metabolic enzymes, CYP71A12, CYP71A13, PEN2, and PAD3, was transiently induced by exposure to N2O5 gas once for 20 s peaking at 1–3 h post-exposure. However, the expression of PDF1.2 was enhanced beginning from 6 h after exposure and its high expression was maintained until 24–48 h later. Thus, enhanced tryptophan metabolism leading to the synthesis of antimicrobial substances such as camalexin and antimicrobial peptides might have contributed to the N2O5-gas-induced disease resistance.

Funder

Tohoku University

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3