Diagnostic performance of optical coherence tomography macular ganglion cell inner plexiform layer and retinal nerve fiber layer thickness in glaucoma suspect and early glaucoma patients at St. Paul’s hospital millennium medical college, Addis Ababa, Ethiopia

Author:

Abera AddishiwotORCID,W. Gessesse Girum

Abstract

Purpose To evaluate glaucoma diagnostic performance of ganglion cell inner plexiform layer and retinal nerve fiber layer parameters measured with cirrus HD optical coherence tomography (OCT). Method Total of 188 eyes were included in our study. 49 eyes of healthy controls, 70 glaucoma suspect eyes and 69 early glaucomatous eyes. Complete ophthalmic examination was done including visual field test (with Humphrey field analyzer) and OCT scanning of ganglion cell inner plexiform layer (GCIPL) and retinal nerve fiber layer (RNFL) in different quadrants. Sensitivity, specificity and area under the receiver operating characteristic curve (AUROC) of each parameter was calculated to provide diagnostic ability between normal controls, glaucoma suspects or early glaucoma. Result GCIPL and RNFL parameters had strong power in discriminating early glaucoma from healthy controls with all having AUROC of above 0.76. Of all the GCIPL and RNFL parameters, the only variable that could discriminate between glaucoma suspect and healthy controls was the combined parameter by OR-logic approach. Of all the parameters, the average and nasal RNFL parameters had the strongest power in discriminating between the two with AUROC of 0.81. All parameters had an overall good diagnostic performance with excellent sensitivity but the specificity was relatively poor. The combined parameter had the best specificity (62.2%) with excellent sensitivity (93.5%). Conclusion Nasal RNFL parameters had the strongest power in discriminating between glaucoma suspect and healthy controls and the OR-logic combination of RNFL and GCIPL provides better diagnostic performance than single GCIPL, RNFL or ONH parameter.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference23 articles.

1. Basic and Clinical Science Course-Glaucoma Section 10, 2015–2016.

2. Glaucoma is second leading cause of blindness globally;S. Kingman;Bull World Health Organ,2004

3. The Nature of Macular Damage in Glaucoma as revealed by Averaging Optical Coherence Tomography Data;D C Hood;Translational Vis Sci & Technology,2012

4. The pathophysiology and treatment of glaucoma: a review;R.N. Weinreb;JAMA,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3