Regional brain development in fetuses with Dandy-Walker malformation: A volumetric fetal brain magnetic resonance imaging study

Author:

Akiyama ShizukoORCID,Madan NeelORCID,Graham George,Samura Osamu,Kitano Rie,Yun Hyuk JinORCID,Craig AlexaORCID,Nakamura Tomohiro,Hozawa Atsushi,Grant Ellen,Im Kiho,Tarui TomoORCID

Abstract

Dandy-Walker malformation (DWM) is a common prenatally diagnosed cerebellar malformation, characterized by cystic dilatation of the fourth ventricle, upward rotation of the hypoplastic vermis, and posterior fossa enlargement with torcular elevation. DWM is associated with a broad spectrum of neurodevelopmental abnormalities such as cognitive, motor, and behavioral impairments, which cannot be explained solely by cerebellar malformations. Notably, the pathogenesis of these symptoms remains poorly understood. This study investigated whether fetal structural developmental abnormalities in DWM extended beyond the posterior fossa to the cerebrum even in fetuses without apparent cerebral anomalies. Post-acquisition volumetric fetal magnetic resonance imaging (MRI) analysis was performed in 12 fetuses with DWM and 14 control fetuses. Growth trajectories of the volumes of the cortical plate, subcortical parenchyma, cerebellar hemispheres, and vermis between 18 and 33 weeks of gestation were compared. The median (interquartile range) gestational ages at the time of MRI were 22.4 (19.4–24.0) and 23.9 (20.6–29.2) weeks in the DWM and control groups, respectively (p = 0.269). Eight of the 12 fetuses with DWM presented with associated cerebral anomalies, including hydrocephalus (n = 3), cerebral ventriculomegaly (n = 3), and complete (n = 2) and partial (n = 2) agenesis of the corpus callosum (ACC); 7 presented with extracerebral abnormalities. Chromosomal abnormalities were detected by microarray analysis in 4 of 11 fetuses with DWM, using amniocentesis. Volumetric analysis revealed that the cortical plate was significantly larger in fetuses with DWM than in controls (p = 0.040). Even without ACC, the subcortical parenchyma, whole cerebrum, cerebellar hemispheres, and whole brain were significantly larger in fetuses with DWM (n = 8) than in controls (p = 0.004, 0.025, 0.033, and 0.026, respectively). In conclusion, volumetric fetal MRI analysis demonstrated that the development of DWM extends throughout the brain during the fetal period, even without apparent cerebral anomalies.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Susan Saltonstall Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3