Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate

Author:

Qaidi ShakerORCID,Al-Kamaki Yaman S. S.ORCID,Al-Mahaidi Riadh,Mohammed Ahmed S.,Ahmed Hemn Unis,Zaid Osama,Althoey FadiORCID,Ahmad Jawad,Isleem Haytham F.ORCID,Bennetts Ian

Abstract

In recent decades, several studies have considered the use of plastic waste as a partial substitute for aggregate in green concrete. Such concrete has been limited to non-structural applications due to its low strength. This raises whether such concrete can be enhanced for use in some structural applications. This paper reports an attempt to develop a structural-grade concrete containing plastic waste aggregate with high proportions of substitution and confined with carbon fiber reinforced polymer (CFRP) fabrics. Experimental research was conducted involving the casting and testing 54 plain and confined concrete cylinders. A concrete mixture was designed in which the fine aggregate was partially replaced by polyethylene terephthalate (PET) waste plastic at ratios of 0%, 25%, and 50%, and with different w/c ratios of 0.40, 0.45, and 0.55. The results show that confinement has a substantial positive effect on the compressive behavior of PET concrete. The enhancement efficiency increases by 8–190%, with higher enhancement levels for higher substitution ratios. Adding one layer of CFRP fabric raises the ultimate strength of samples that have lost compressive strength to a level close to that of unconfined samples not containing PET. This confinement is accompanied by an increase in the slope of the stress-strain curve and greater axial and lateral strain values at failure. For the specimens confined by CFRP fabric, PET aggregate can be used as a partial substitute for sand at a replacement ratio of up to 50% by volume for structural applications. This paper also considers the ability of existing models to predict the strength of confined-PET concrete circular cross-sections by comparing model predictions with experimental results. The strength of confined PET concrete elements can’t be accurately predicted by any of the models that are already out there. It’s important to come up with a new model for these elements.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3