Assessing the added value of linking electronic health records to improve the prediction of self-reported COVID-19 testing and diagnosis

Author:

Clark-Boucher Dylan,Boss Jonathan,Salvatore MaxwellORCID,Smith Jennifer A.,Fritsche Lars G.ORCID,Mukherjee Bhramar

Abstract

Since the beginning of the Coronavirus Disease 2019 (COVID-19) pandemic, a focus of research has been to identify risk factors associated with COVID-19-related outcomes, such as testing and diagnosis, and use them to build prediction models. Existing studies have used data from digital surveys or electronic health records (EHRs), but very few have linked the two sources to build joint predictive models. In this study, we used survey data on 7,054 patients from the Michigan Genomics Initiative biorepository to evaluate how well self-reported data could be integrated with electronic records for the purpose of modeling COVID-19-related outcomes. We observed that among survey respondents, self-reported COVID-19 diagnosis captured a larger number of cases than the corresponding EHRs, suggesting that self-reported outcomes may be better than EHRs for distinguishing COVID-19 cases from controls. In the modeling context, we compared the utility of survey- and EHR-derived predictor variables in models of survey-reported COVID-19 testing and diagnosis. We found that survey-derived predictors produced uniformly stronger models than EHR-derived predictors—likely due to their specificity, temporal proximity, and breadth—and that combining predictors from both sources offered no consistent improvement compared to using survey-based predictors alone. Our results suggest that, even though general EHRs are useful in predictive models of COVID-19 outcomes, they may not be essential in those models when rich survey data are already available. The two data sources together may offer better prediction for COVID severity, but we did not have enough severe cases in the survey respondents to assess that hypothesis in in our study.

Funder

National Science Foundation

National Institutes of Health

Michigan Collaborative Addiction Resources and Education System

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference52 articles.

1. CDC COVID Data Tracker. [cited 27 Feb 2022]. https://covid.cdc.gov/covid-data-tracker/#datatracker-home.

2. Michigan Coronavirus. [cited 27 Feb 2022]. https://www.michigan.gov/coronavirus.

3. SARS-CoV-2 variants of concern and variants under investigation in England—technical briefing 17. London, United Kingdom; 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001354/Variants_of_Concern_VOC_Technical_Briefing_17.pdf.

4. SARS-CoV-2 Variant Classifications and Definitions. [cited 16 Aug 2021]. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fcases-updates%2Fvariant-surveillance%2Fvariant-info.html.

5. Coronavirus variants are spreading in India-what scientists know so far;G. Vaidyanathan;Nature,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3