Construction of a 5-gene prognostic signature based on oxidative stress related genes for predicting prognosis in osteosarcoma

Author:

Hong Xiaofang,Fu RibinORCID

Abstract

Background The understanding of the complex biological scenario of osteosarcoma will open the way to identifying new strategies for its treatment. Oxidative stress is a cancer-related biological scenario. At present, it is not clear the oxidative stress genes in affecting the prognosis and progression of osteosarcoma, the underlying mechanism as well as their impact on the classification of osteosarcoma subtypes. Methods We selected samples and sequencing data from TARGET data set and GSE21257 data set, and downloaded oxidative stress related-genes (OSRGs) from MsigDB. Univariate Cox analysis of OSRG was conducted using TARGET data, and the prognostic OSRG was screened to conduct unsupervised clustering analysis to identify the molecular subtypes of osteosarcoma. Through least absolute shrinkage and selection operator (LASSO) regression analysis and COX regression analysis of differentially expressed genes (DEGs) between subgroups, a risk assessment system for osteosarcoma was developed. Results 45 prognosis-related OSRGs genes were acquired, and two molecular subtypes of osteosarcoma were clustered. C2 cluster displayed prolonged overall survival (OS) accompanied with high degree of immune infiltration and enriched immune pathways. While cell cycle related pathways were enriched in C2 cluster. Based on DEGs between subgroups and Lasso analysis, 5 hub genes (ZYX, GJA5, GAL, GRAMD1B, and CKMT2) were screened to establish a robust prognostic risk model independent of clinicopathological features. High-risk group had more patients with cancer metastasis and death as well as C1 subtype with poor prognosis. Low-risk group exhibited favorable OS and high immune infiltration status. Additionally, the risk assessment system was optimized by building decision tree and nomogram. Conclusions This study defined two molecular subtypes of osteosarcoma with different prognosis and tumor immune microenvironment status based on the expression of OSRGs, and provided a new risk assessment system for the prognosis of osteosarcoma.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3