Study on the migration characteristics of bioaerosols and optimization of ventilation patterns in a negative pressure isolation ward considering different patient postures

Author:

Wu Dieen,Chen Jianji,Fu Xihua,Li ZongkunORCID,Tan Futai,Lin Hai

Abstract

Due to the serious global harm caused by the outbreak of various viral infectious diseases, how to improve indoor air quality and contain the spread of infectious bioaerosols has become a popular research subject. Negative pressure isolation ward is a key place to prevent the spread of aerosol particles. However, there is still limited knowledge available regarding airflow patterns and bioaerosol diffusion behavior in the ward, which is not conducive to reducing the risk of cross-infection between health care workers (HCWs) and patients. In addition, ventilation layout and patient posture have important effects on aerosol distribution. In this study, the spatial and temporal characteristics as well as dispersion patterns of bioaerosols under different ventilation patterns in the ward were investigated using the computational fluid dynamics (CFD) technique. It is concluded that changes in the location of droplet release source due to different body positions of the patient have a significant effect on the bioaerosol distribution. After optimizing the layout arrangements of exhaust air, the aerosol concentration in the ward with the patient in both supine and sitting positions is significantly reduced with particle removal efficiencies exceeding 95%, that is, the ventilation performance is improved. Meanwhile, the proportion of aerosol deposition on all surfaces of the ward is decreased, especially the deposition on both the patient’s body and the bed is less than 1%, implying that the risk of HCWs being infected through direct contact is reduced.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. WHO declares COVID-19 a pandemic.;D Cucinotta;Acta bio-medica: Atenei Parmensis.,2020

2. Impact of the Coronavirus Disease 2019 Pandemic on an Emergency Department Service: Experience at the Largest Tertiary Center in Taiwan.;T Li Heng;Risk Management and Healthcare Policy,2021

3. Airborne transmission of SARS-CoV-2: The world should face the reality.;L Morawska;Environment International,2020

4. Negative pressure rooms and COVID-19;S. Al-Benna;Journal of Perioperative Practice,2020

5. Infection Control Improvement of a Negative-Pressurized Pediatric Intensive Care Unit.;F-J Wang;Healthcare,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3