Optimizing FPGA implementation of high-precision chaotic systems for improved performance

Author:

Damaj IssamORCID,Zaher AshrafORCID,Lawand Wafic

Abstract

Developing chaotic systems-on-a-chip is gaining much attention due to its great potential in securing communication, encrypting data, generating random numbers, and more. The digital implementation of chaotic systems strives to achieve high performance in terms of time, speed, complexity, and precision. In this paper, the focus is on developing high-speed Field Programmable Gate Array (FPGA) cores for chaotic systems, exemplified by the Lorenz system. The developed cores correspond to numerical integration techniques that can extend to the equations of the sixth order and at high precision. The investigation comprises a thorough analysis and evaluation of the developed cores according to the algorithm complexity and the achieved precision, hardware area, throughput, power consumption, and maximum operational frequency. Validations are done through simulations and careful comparisons with outstanding closely related work from the recent literature. The results affirm the successful creation of highly efficient sixth-order Lorenz discretizations, achieving a high throughput of 3.39 Gbps with a precision of 16 bits. Additionally, an outstanding throughput of 21.17 Gbps was achieved for the first-order implementation coupled with a high precision of 64 bits. These outcomes set our work as a benchmark for high-performance characteristics, surpassing similar investigations reported in the literature.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3