A new method for in vivo assessment of corneal transparency using spectral-domain OCT

Author:

Vilbert MaëlleORCID,Bocheux Romain,Georgeon Cristina,Borderie Vincent,Pernot Pascal,Irsch KristinaORCID,Plamann Karsten

Abstract

Corneal transparency is essential to provide a clear view into and out of the eye, yet clinical means to assess such transparency are extremely limited and usually involve a subjective grading of visible opacities by means of slit-lamp biomicroscopy. Here, we describe an automated algorithm allowing extraction of quantitative corneal transparency parameters with standard clinical spectral-domain optical coherence tomography (SD-OCT). Our algorithm employs a novel pre-processing procedure to standardize SD-OCT image analysis and to numerically correct common instrumental artifacts before extracting mean intensity stromal-depth (z) profiles over a 6-mm-wide corneal area. The z-profiles are analyzed using our previously developed objective method that derives quantitative transparency parameters directly related to the physics of light propagation in tissues. Tissular heterogeneity is quantified by the Birge ratio Br and the photon mean-free path (ls) is determined for homogeneous tissues (i.e., Br~1). SD-OCT images of 83 normal corneas (ages 22–50 years) from a standard SD-OCT device (RTVue-XR Avanti, Optovue Inc.) were processed to establish a normative dataset of transparency values. After confirming stromal homogeneity (Br <10), we measured a median ls of 570 μm (interdecile range: 270–2400 μm). By also considering corneal thicknesses, this may be translated into a median fraction of transmitted (coherent) light Tcoh(stroma) of 51% (interdecile range: 22–83%). Excluding images with central saturation artifact raised our median Tcoh(stroma) to 73% (interdecile range: 34–84%). These transparency values are slightly lower than those previously reported, which we attribute to the detection configuration of SD-OCT with a relatively small and selective acceptance angle. No statistically significant correlation between transparency and age or thickness was found. In conclusion, our algorithm provides robust and quantitative measurements of corneal transparency from standard SD-OCT images with sufficient quality (such as ‘Line’ and ‘CrossLine’ B-scan modes without central saturation artifact) and addresses the demand for such an objective means in the clinical setting.

Funder

European Research Council

LabEx PALM

“Banque Française des Yeux”

Agence Nationale de la Recherche

Institut Hospitalo-Universitaire

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3