Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study

Author:

Chen BixiaORCID,Dammann Philipp,Jabbarli Ramazan,Sure Ulrich,Quick Harald H.,Kraff Oliver,Wrede Karsten H.ORCID

Abstract

Objective The quantity of ultra-high field MRI neuroimaging studies has rapidly increased. This study tests function, safety, and image artifacts of two frequently implanted programmable ventriculo-peritoneal (VP) shunt valves in a 7T MRI system. Methods All tests were performed using a whole-body 7T MRI system. Three proGAV 2.0 and 3 CODMAN CERTAS® Plus programmable VP-shunt valves were tested in three steps. 1) Deflection angle tests close to the bore opening at the location of a static magnetic field gradient of 3–5 T/m. 2) Valves were fixed on a spherical phantom in 3 positions (a. lateral, b. cranial, c. cranial with 22.5° tilt anteriorly) and assessed for keeping the programmed pressure setting and reprogrammability. 3) Valves were fixed on the phantom and positioned lateral in a radiofrequency head coil. MRI scans were performed for both models, including MPRAGE, GRE and SE sequences. Results Deflection angles were moderate (13°, 14°, 13°) for the proGAV valves and close to critical (43°, 43°, 41°) for the CODMAN valves at the test location. Taking a scaling factor of 2–3 for the maximum spatial magnetic field gradient accessible to a patient within the magnet bore into account renders both valves MR unsafe regarding ferromagnetic attraction. The proGAV valves kept the pressure settings in all positions and were reprogrammable in positions a. and b. In position c., reprogrammability was lost. The CODMAN valves changed their pressure setting and reprogrammability was lost in all positions. MR image signal homogeneity was unaltered in the phantom center, artifacts limit the assessability of structures in close vicinity to the valves. Conclusion Both tested programmable VP-shunt valves are MR unsafe for 7T systems. Novel programming mechanisms using permanent magnets with sufficient magnetic coercivity or magnet-free mechanisms may allow the development of programmable VP-shunt valves that are conditional for 7T MR systems.

Funder

Deutsche Forschungsgesellschaft

Interne Forschungsförderung Essen (IFORES), University Hospital Essen, University Duisburg-Essen

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3