Rainfall as a driver for near-surface turbulence and air-water gas exchange in freshwater aquatic systems

Author:

Bohórquez-Bedoya ElianaORCID,Rovelli Lorenzo,Lorke AndreasORCID

Abstract

Gas fluxes from aquatic ecosystems are a significant component of the carbon cycle. Gas exchange across the air-water interface is regulated by near-surface turbulence and can be controlled by different atmospheric forcing conditions, with wind speed and surface buoyancy flux being the most recognized drivers in empirical studies and modeling approaches. The effect of rainfall on near-surface turbulence has rarely been studied and a consistent relationship between rain rate and near-surface turbulence has not yet been established. In this study, we addressed some limitations still present in the quantitative understanding of the effect of rain rate on near-surface turbulence and on the resulting gas transfer velocity in freshwater. We performed controlled laboratory experiments over a wide range of rain rates (7 to 90 mm h-1) and estimated gas transfer velocities from high-resolution measurements of O2 concentration, while rain-induced turbulence was characterized based on particle image velocimetry. We found that the rain-induced dissipation rates of turbulent kinetic energy declined with depth following a consistent power-law relationship. Both energy dissipation rates and gas transfer velocity increased systematically with the rain rate. The results confirm a causal relationship between rainfall, turbulence, and gas exchange. We propose a power-law relationship between near-surface turbulent dissipation rates and rain rate. In combination with surface renewal theory, we derived a direct relationship between gas transfer velocity and rain rate, which can be used to assess the importance of short-term drivers, such as rain events, on gas dynamics and biogeochemical cycling in aquatic ecosystems.

Funder

Ministerio de Ciencia Tecnología e Innovación de Colombia

German Research Foundation

Deutscher Akademischer Austauschdienst France

Facultad de Minas - Universidad Nacional de Colombia Sede Medellín

Publisher

Public Library of Science (PLoS)

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3