Bayesian-knowledge driven ontologies: A framework for fusion of semantic knowledge under uncertainty and incompleteness

Author:

Santos EugeneORCID,Jurmain Jacob,Ragazzi AnthonyORCID

Abstract

The modeling of uncertain information is an open problem in ontology research and is a theoretical obstacle to creating a truly semantic web. Currently, ontologies often do not model uncertainty, so stochastic subject matter must either be normalized or rejected entirely. Because uncertainty is omnipresent in the real world, knowledge engineers are often faced with the dilemma of performing prohibitively labor-intensive research or running the risk of rejecting correct information and accepting incorrect information. It would be preferable if ontologies could explicitly model real-world uncertainty and incorporate it into reasoning. We present an ontology framework which is based on a seamless synthesis of description logic and probabilistic semantics. This synthesis is powered by a link between ontology assertions and random variables that allows for automated construction of a probability distribution suitable for inferencing. Furthermore, our approach defines how to represent stochastic, uncertain, or incomplete subject matter. Additionally, this paper describes how to fuse multiple conflicting ontologies into a single knowledge base that can be reasoned with using the methods of both description logic and probabilistic inferencing. This is accomplished by using probabilistic semantics to resolve conflicts between assertions, eliminating the need to delete potentially valid knowledge and perform consistency checks. In our framework, emergent inferences can be made from a fused ontology that were not present in any of the individual ontologies, producing novel insights in a given domain.

Funder

National Institutes of Health

Air Force Office of Scientific Research

Publisher

Public Library of Science (PLoS)

Reference60 articles.

1. An alternative proof method for possibilistic logic and its application to terminological logics;B Hollunder;International Journal of Approximate Reasoning,1995

2. Probabilistic logic;NJ Nilsson;Artificial intelligence,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3