The influence of distant surcharge load with a finite length on the cantilever walls

Author:

Akan RecepORCID

Abstract

The behavior of a sheet pile wall constructed on saturated sand soil and exposed to a distant surcharge load with a finite length at the top of the backfill soil is examined in this study. For this aim, various internal friction angles (φ), and natural ground surface for the groundwater level are considered. Furthermore, it is considered that the sheet pile wall acts as cantilevered and supports a six-meter-high (H) excavation. The simple “45° distribution” (AP) and uniform distribution of “Beton Kalender distribution” (BK) methods are examined with Coulomb’s and Rankine’s earth pressure theories in analytical solutions, while the finite element method (FEM) is used as a numerical method. The present research has two primary goals: a) determining the best analytical approach that provides the maximum bending moment (Mmax) values that are more comparable to those of the FEM b) examining the behavior of the sheet pile wall considering several effects of load scenarios, depth (D) and section type (ST) of the wall, and the soil properties together. In this context, parametrical analyses are performed. Consequently, it is found that the distance of the surcharge load (x1) has a pronounced effect than the intensity (q) and length (Ls) of the surcharge load on the behavior of the sheet pile, and this effect vanishes for the large values of x1. Furthermore, Coulomb theory provides more convenient values with FEM for Mmax than those obtained from Rankine theory. The Mmax values obtained from FEM are generally less than those from BK, while they are greater than those from APC.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. Sheet pile retaining walls design and construction in brown fields environment level crossing removal project 1. 8 th Aust. Small Bridg;A Holakoo;Conf., Sydney,2017

2. Limiting values of retaining wall displacements and impact to the adjacent structures;P Fok;Ceased,2012

3. Influence of drainage condition on Coulomb-type active earth pressure;JJ Wang;Soil Mech Found Eng,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3