Insect-based fish feed in decoupled aquaponic systems: Effect on lettuce production and resource use

Author:

Pinho SaraORCID,Leal Margarida Meneses,Shaw ChristopherORCID,Baganz DanielaORCID,Baganz Gösta,Staaks Georg,Kloas Werner,Körner OliverORCID,Monsees Hendrik

Abstract

The utilisation of insect meal-based fish feed as a substitute for conventional fish meal-based fish feed is considered as a promising innovative alternative to boost circularity in aquaculture and aquaponics. Basic research on its use in aquaponics is limited. So far, no reports on the effects of fish waste water, derived from a recirculating aquaculture system using Black Soldier Fly (BSF) meal-based diets, were available on the growth performance of lettuce. Therefore, this study aimed to compare the effect of reusing fish waste water from tilapia culture (as a base for the nutrient solution) fed with a fish meal-based diet (FM) and a BSF meal-based diet on resource use and lettuce growth in decoupled aquaponic systems. A conventional hydroponics nutrient solution (HP) served as control, and inorganic fertilisers were added to all nutrient solutions to reach comparable target concentrations. The experiment was conducted in a controlled climate chamber in nine separate hydroponics units, three per treatment. Lettuce fresh and dry weight, number of leaves, relative leaf chlorophyll concentration, water consumption, and the usage of inorganic fertilisers were measured. Micro- and macronutrients in the nutrient solutions were monitored in time series. Similar lettuce yield was seen in all treatments, with no significant effects on fresh and dry weight, the number of leaves, and relative chlorophyll values. Water use per plant was also similar between treatments, while the amount of total inorganic fertiliser required was 32% lower in FM and BSF compared to HP. Higher sodium concentrations were found in the FM nutrient solutions compared to BSF and HP. The results confirm that BSF-based diet is a promising alternative to FM-based diet in aquaponics with no negative effects on lettuce growth. Additionally, BSF-based diet might be beneficial in intensive, professional aquaponics applications due to the lower sodium concentration in the nutrient solution.

Funder

Belmont Forum

Bundesministerium für Bildung und Forschung

HORIZON EUROPE European Innovation Council

Bundesministerium für Ernährung und Landwirtschaft

Publisher

Public Library of Science (PLoS)

Reference59 articles.

1. The aquaponic principle—It is all about coupling;GFM Baganz;Reviews in Aquaculture,2022

2. Aquaponic systems: biological and technological parameters.;M Krastanova;Biotechnology & Biotechnological Equipment.,2022

3. Aquaponic trends and challenges–A review;B Yep;Journal of Cleaner Production,2019

4. Aquaponics: The Basics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3