Administration of alendronate exacerbates ammonium chloride-induced acidosis in mice

Author:

Moody MikaylaORCID,Schmidt Tannin A.,Trivedi Ruchir,Deymier AlixORCID

Abstract

Bone disease is highly prevalent in patients with chronic kidney disease (CKD), leading to an increased risk of bone fractures. This is due in part to metabolic acid-induced bone dissolution. Bisphosphonates (BPPs) are a potential treatment for inhibiting bone dissolution; however, there are limited studies observing the use of BPPs on acidotic patients. We aimed to determine efficacy of BPPs on maintaining bone health and pH regulation in acid-exposed mice. Using a diet-induced murine model of metabolic acidosis, we examined bone structure, composition, and mechanics as well as blood gases for three groups: control, acidosis, and acidosis + bisphosphonates (acidosis+BPP). Acidosis was induced for 14 days and alendronate was administered every 3 days for the acidosis+BPP group. The administration of BPP had little to no effect on bone structure, mechanics, and composition of the acidosis bones. However, administration of BPP did cause the mice to develop more severe acidosis than the acidosis only group. Overall, we discovered that BPPs may exacerbate acidosis symptoms by inhibiting the release of buffering ions from bone. Therefore, we propose that BPP administration should be carefully considered for those with CKD and that alkali supplementation could help minimize acidifying effects.

Funder

University of Connecticut Health Center

Division of Materials Research

University of Connecticut

National GEM Consortium

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. Rapid cortical bone loss in patients with chronic kidney disease;T.L. Nickolas;J. Bone Miner. Res,2013

2. Evaluation of fracture risk in chronic kidney disease;P.A.U. Torres;J. Nephrol,2017

3. Pamidronate-induced nephrotoxic tubular necrosis—a case report, Clin;S. Smetana;Nephrol,2004

4. Renal Failure with the Use of Zoledronic Acid, N;Engl. J. Med,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3