Abstract
Accurate prediction of blood glucose levels is essential for type 1 diabetes optimizing insulin therapy and minimizing complications in patients with type 1 diabetes. Using ensemble learning algorithms is a promising approach. In this regard, this study proposes an improved stacking ensemble learning algorithm for predicting blood glucose level, in which three improved long short-term memory network models are used as the base model, and an improved nearest neighbor propagation clustering algorithm is adaptively weighted to this ensemble model. The OhioT1DM dataset is used to train and evaluate the performance of the proposed model. This study evaluated the performance of the proposed model using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Matthews Correlation Coefficient (MCC) as the evaluation metrics. The experimental results demonstrate that the proposed model achieves an RMSE of 1.425 mg/dL, MAE of 0.721 mg/dL, and MCC of 0.982 mg/dL for a 30-minute prediction horizon(PH), RMSE of 3.212 mg/dL, MAE of 1.605 mg/dL, and MCC of 0.950 mg/dL for a 45-minute PH; and RMSE of 6.346 mg/dL, MAE of 3.232 mg/dL, and MCC of 0.930 mg/dL for a 60-minute PH. Compared with the best non-ensemble model StackLSTM, the RMSE and MAE were improved by up to 27.92% and 65.32%, respectively. Clarke Error Grid Analysis and critical difference diagram revealed that the model errors were within 10%. The model proposed in this study exhibits state-of-the-art predictive performance, making it suitable for clinical decision-making and of significant importance for the effective treatment of diabetes in patients.
Publisher
Public Library of Science (PLoS)
Reference57 articles.
1. Gestational diabetes mellitus—A metabolic and reproductive disorder;AA Choudhury;Biomed Pharmacother,2021
2. High incidence of type 1 diabetes, type 2 diabetes and gestational diabetes in Central Iran: A six years results from Semnan health cohort;M Babakhanian;Ann Med Surg (Lond),2022
3. Machine learning based pattern detection technique for diabetes mellitus prediction;A Sumathi;Concurrency and Computation-Practice & Experience,2022
4. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure;DL Eizirik;Nat Rev Endocrinol,2020
5. Type 1 diabetes mellitus as a disease of the beta-cell (do not blame the immune system?);BO Roep;Nat Rev Endocrinol,2021
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献