Identification of potential immune-related hub genes in Parkinson’s disease based on machine learning and development and validation of a diagnostic classification model

Author:

Xin GuanghaoORCID,Niu Jingyan,Tian Qinghua,Fu Yanchi,Chen Lixia,Yi Tingting,Tian Kuo,Sun Xuesong,Wang Na,Wang Jianjian,Zhang HuixueORCID,Wang LihuaORCID

Abstract

Background Parkinson’s disease is the second most common neurodegenerative disease in the world. However, current diagnostic methods are still limited, and available treatments can only mitigate the symptoms of the disease, not reverse it at the root. The immune function has been identified as playing a role in PD, but the exact mechanism is unknown. This study aimed to search for potential immune-related hub genes in Parkinson’s disease, find relevant immune infiltration patterns, and develop a categorical diagnostic model. Methods We downloaded the GSE8397 dataset from the GEO database, which contains gene expression microarray data for 15 healthy human SN samples and 24 PD patient SN samples. Screening for PD-related DEGs using WGCNA and differential expression analysis. These PD-related DEGs were analyzed for GO and KEGG enrichment. Subsequently, hub genes (dld, dlk1, iars and ttd19) were screened by LASSO and mSVM-RFE machine learning algorithms. We used the ssGSEA algorithm to calculate and evaluate the differences in nigrostriatal immune cell types in the GSE8397 dataset. The association between dld, dlk1, iars and ttc19 and 28 immune cells was investigated. Using the GSEA and GSVA algorithms, we analyzed the biological functions associated with immune-related hub genes. Establishment of a ceRNA regulatory network for immune-related hub genes. Finally, a logistic regression model was used to develop a PD classification diagnostic model, and the accuracy of the model was verified in three independent data sets. The three independent datasets are GES49036 (containing 8 healthy human nigrostriatal tissue samples and 15 PD patient nigrostriatal tissue samples), GSE20292 (containing 18 healthy human nigrostriatal tissue samples and 11 PD patient nigrostriatal tissue samples) and GSE7621 (containing 9 healthy human nigrostriatal tissue samples and 16 PD patient nigrostriatal tissue samples). Results Ultimately, we screened for four immune-related Parkinson’s disease hub genes. Among them, the AUC values of dlk1, dld and ttc19 in GSE8397 and three other independent external datasets were all greater than 0.7, indicating that these three genes have a certain level of accuracy. The iars gene had an AUC value greater than 0.7 in GES8397 and one independent external data while the AUC values in the other two independent external data sets ranged between 0.5 and 0.7. These results suggest that iars also has some research value. We successfully constructed a categorical diagnostic model based on these four immune-related Parkinson’s disease hub genes, and the AUC values of the joint diagnostic model were greater than 0.9 in both GSE8397 and three independent external datasets. These results indicate that the categorical diagnostic model has a good ability to distinguish between healthy individuals and Parkinson’s disease patients. In addition, ceRNA networks reveal complex regulatory relationships based on immune-related hub genes. Conclusion In this study, four immune-related PD hub genes (dld, dlk1, iars and ttd19) were obtained. A reliable diagnostic model for PD classification was developed. This study provides algorithmic-level support to explore the immune-related mechanisms of PD and the prediction of immune-related drug targets.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Natural Science Foundation of China

National Key Research and Development Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. Challenges in the diagnosis of Parkinson’s disease;E Tolosa;The Lancet Neurology,2021

2. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017;D Pgda;The Lancet Public Health,2020

3. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015;IP Collaborators;LANCET -LONDON-,2016

4. Parkinson’s disease.;BR Bloem;The Lancet,2021

5. Medical records documentation of constipation preceding Parkinson disease: A case-control study;R Savica;Neurology,2009

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3