Dexrazoxane does not mitigate early vascular toxicity induced by doxorubicin in mice

Author:

Bosman MatthiasORCID,Krüger Dustin N.,Favere Kasper,De Meyer Guido R. Y.ORCID,Franssen Constantijn,Van Craenenbroeck Emeline M.,Guns Pieter-JanORCID

Abstract

Apart from cardiotoxicity, the chemotherapeutic agent doxorubicin (DOX) provokes acute and long-term vascular toxicity. Dexrazoxane (DEXRA) is an effective drug for treatment of DOX-induced cardiotoxicity, yet it remains currently unknown whether DEXRA prevents vascular toxicity associated with DOX. Accordingly, the present study aimed to evaluate the protective potential of DEXRA against DOX-related vascular toxicity in a previously-established in vivo and ex vivo model of vascular dysfunction induced by 16 hour (h) DOX exposure. Vascular function was evaluated in the thoracic aorta in organ baths, 16h after administration of DOX (4 mg/kg) or DOX with DEXRA (40 mg/kg) to male C57BL6/J mice. In parallel, vascular reactivity was evaluated after ex vivo incubation (16h) of murine aortic segments with DOX (1 μM) or DOX with DEXRA (10 μM). In both in vivo and ex vivo experiments, DOX impaired acetylcholine-stimulated endothelium-dependent vasodilation. In the ex vivo setting, DOX additionally attenuated phenylephrine-elicited vascular smooth muscle cell (VSMC) contraction. Importantly, DEXRA failed to prevent DOX-induced endothelial dysfunction and hypocontraction. Furthermore, RT-qPCR and Western blotting showed that DOX decreased the protein levels of topoisomerase-IIβ (TOP-IIβ), a key target of DEXRA, in the heart, but not in the aorta. Additionally, the effect of N-acetylcysteine (NAC, 10 μM), a reactive oxygen species (ROS) scavenger, was evaluated ex vivo. NAC did not prevent DOX-induced impairment of acetylcholine-stimulated vasodilation. In conclusion, our results show that DEXRA fails to prevent vascular toxicity resulting from 16h DOX treatment. This may relate to DOX provoking vascular toxicity in a ROS- and TOP-IIβ-independent way, at least in the evaluated acute setting. However, it is important to mention that these findings only apply to the acute (16h) treatment period, and further research is warranted to delineate the therapeutic potential of DEXRA against vascular toxicity associated with longer-term repetitive DOX dosing.

Funder

Fund for Scientific Research

FWO Flanders

Foundation against Cancer

DOCPRO4 grant of the Research Council of the University of Antwerp

European Union's Horizon 2020 Research and Innovation Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3