Local ecological factors, not interference competition, drive the foundress number of two species of fig wasp sharing Ficus septica figs

Author:

Di Giusto Bruno,Bain AnthonyORCID

Abstract

Recent studies have challenged assumptions about the classic fig-fig wasp pollination mutualism model, suggesting that further investigation into the receptive phase of fig development is needed. This study assessed the pollination mechanisms of Ficus septica in southern Taiwan and identified two species of wasps as the primary pollinators. Machine learning was used to identify and rank the factors that explain the relative abundance of these wasps. The two wasp species showed the highest level of cohabitation ever reported in the literature, with three-quarters of the figs containing multiple foundresses. The study also reported re-emerged foundresses and a 10% ratio of pollinated figs without foundresses. Local factors, such as the sampling period and tree identity, were the best predictors of the presence and number of each foundress species, with fig size also affecting the number of foundresses. The study highlights the variability in pollinator abundance between figs, crops, and trees. It also shows that the local environment of the trees and the availability of figs are crucial factors in determining which figs the pollinator wasps choose. These findings challenge assumptions about the classic mutualism model and suggest that long-term surveys are needed to estimate the relative contributions of each partner and provide data for evolutionary and ecological models. This study also provides valuable insights into the factors that affect the abundance and interactions of pollinator wasps during the receptive phase of fig development, with implications for understanding the behaviour of pollinating wasps and advancing our knowledge of population dynamics in Ficus species.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3