Antileishmanial potentials of azacitidine and along with meglumine antimoniate on Leishmania major: In silico prediction and in vitro analysis

Author:

Derakhshani Ali,Sharifi Iraj,Salarkia Ehsan,Keyhani Alireza,Agha Kuchak Afshari Setareh,Iranmanesh Behzad,Lashkarizadeh Mahdieh,Nejad Biglari Hamid,Lari Najafi Moslem,Bamorovat MehdiORCID

Abstract

This study aimed to investigate the in vitro and in silico antileishmanial activity of azacitidine (AZA) on Leishmania major promastigotes and amastigotes. The in silico method was used to evaluate the possibility of the interaction of AZA into the binding pocket of inducible nitric oxide synthase (iNOS), a leading defensive oxidative metabolite. Following that, in vitro anti-promastigote, and anti-amastigote activity of AZA was determined using an MTT assay and a macrophage model, respectively. Cytotoxic effects of AZA and meglumine antimoniate (MA) were also assessed by MTT assay on murine macrophages. All experiments were performed in triplicate. The results showed that AZA interacted with Ser133, Gln134, and Lys13 amino acids of iNOS, and the molecular docking score was obtained at -241.053 kcal/mol. AZA in combination with MA significantly (P<0.001) inhibited the growth rate of nonclinical promastigote (IC50 247.6±7.3 μM) and 8.5-fold higher of clinical intramacrophage amastigote stage (29.8±5.3 μM), compared to the untreated group. A significant upsurge of Th1 subsets and transcription genes and a meaningful decline in Th2 cytokines subclasses at the equivalent concentrations of AZA and MA was observed (P<0.001). The apoptosis effect of AZA along with MA was significantly induced on L. major in a dose-dependent manner (P<0.001). The present study demonstrated that AZA possesses antileishmanial activity in in vitro and in silico models. However, AZA combined with MA was more effective than AZA alone in inhibiting the growth rate of promastigotes and amastigotes of L. major. This study indicates that AZA in combination with MA demonstrated a potent antileishmanial mechanism, promoting immune response and enhancing an immunomodulatory role toward the Th1 pathway. This experimental study is a basic study for applying more knowledge about the mechanisms of AZA along with MA in animal models in the future.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3