Development of a deep learning-based surveillance system for forest fire detection and monitoring using UAV

Author:

SHAMTA IbrahimORCID,Demir Batıkan ErdemORCID

Abstract

This study presents a surveillance system developed for early detection of forest fires. Deep learning is utilized for aerial detection of fires using images obtained from a camera mounted on a designed four-rotor Unmanned Aerial Vehicle (UAV). The object detection performance of YOLOv8 and YOLOv5 was examined for identifying forest fires, and a CNN-RCNN network was constructed to classify images as containing fire or not. Additionally, this classification approach was compared with the YOLOv8 classification. Onboard NVIDIA Jetson Nano, an embedded artificial intelligence computer, is used as hardware for real-time forest fire detection. Also, a ground station interface was developed to receive and display fire-related data. Thus, access to fire images and coordinate information was provided for targeted intervention in case of a fire. The UAV autonomously monitored the designated area and captured images continuously. Embedded deep learning algorithms on the Nano board enable the UAV to detect forest fires within its operational area. The detection methods produced the following results: 96% accuracy for YOLOv8 classification, 89% accuracy for YOLOv8n object detection, 96% accuracy for CNN-RCNN classification, and 89% accuracy for YOLOv5n object detection.

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. MS-FRCNN: A multi-scale faster RCNN model for small target forest fire detection;L. Zhang;Forests,2023

2. Pyramid attention based early forest fire detection using UAV imagery;Y. Zhang;J Phys Conf Ser,2022

3. Global emergence of anthropogenic climate change in fire weather indices;J. T. Abatzoglou;Geophys Res Lett,2019

4. Novel climate–fire–vegetation interactions and their influence on forest ecosystems in the western USA;S. Liang;Funct Ecol,2023

5. Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia, Spain;F. J. Alcasena;J Environ Manage,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3