A triangular model of fractal growth with application to adsorptive spin-coating of polymers

Author:

Mulder KennethORCID,Lee Sophia M.ORCID,Chen Wei

Abstract

Over the last 40 years, applied mathematicians and physicists have proposed a number of mathematical models that produce structures exhibiting a fractal dimension. This work has coincided with the discovery that objects with fractal dimension are relatively common in the natural and human-produced worlds. One particularly successful model of fractal growth is the diffusion limited aggregation (DLA) model, a model as notable for its simplicity as for its complex and varied behavior. It has been modified and used to simulate fractal growth processes in numerous experimental and empirical contexts. In this work, we present an alternative fractal growth model that is based on a growing mass that bonds to particles in a surrounding medium and then exerts a force on them in an iterative process of growth and contraction. The resulting structure is a spreading triangular network rather than an aggregate of spheres, and the model is conceptually straightforward. To the best of our knowledge, this model is unique and differs in its dynamics and behavior from the DLA model and related particle aggregation models. We explore the behavior of the model, demonstrate the range of model output, and show that model output can have a variable fractal dimension between 1.5 and 1.83 that depends on model parameters. We also apply the model to simulating the development of polymer thin films prepared using spin-coating which also exhibit variable fractal dimensions. We demonstrate how the model can be adjusted to different dewetting conditions as well as how it can be used to simulate the modification of the polymer morphology under solvent annealing.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Reference45 articles.

1. The fractal geometry of nature;BB Mandelbrot;WH freeman New York,1982

2. Fractal Growth Phenomena

3. 2D fractal pattern in fullerene doped polymer;HJ Gao;Solid State Commun,1996

4. Fractal growth of two-dimensional islands: Au on Ru(0001).;RQ Hwang;Phys Rev Lett,1991

5. Fractal Growth of Giant Amphiphiles in Langmuir-Blodgett Films;WJ Wang;Chin J Polym Sci,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3