Abstract
Mathematical formulations are crucial in understanding the dynamics of disease spread within a community. The aim of this work is to examine that the Lung Cancer detection and treatment by introducing IL2 and anti-PD-L1 inhibitor for low immune individuals. Mathematical model is developed with the created hypothesis to increase immune system by antibody cell’s and Fractal-Fractional operator (FFO) is used to turn the model into a fractional order model. A newly developed system TCDIL2Z is examined both qualitatively and quantitatively in order to determine its stable position. The boundedness, positivity and uniqueness of the developed system are examined to ensure reliable bounded findings, which are essential properties of epidemic models. The global derivative is demonstrated to verify the positivity with linear growth and Lipschitz conditions are employed to identify the rate of effects in each sub-compartment. The system is investigated for global stability using Lyapunov first derivative functions to assess the overall impact of IL2 and anti-PD-L1 inhibitor for low immune individuals. Fractal fractional operator is used to derive reliable solution using Mittag-Leffler kernel. In fractal-fractional operators, fractal represents the dimensions of the spread of the disease and fractional represents the fractional ordered derivative operator. We use combine operators to see real behavior of spread as well as control of lung cancer with different dimensions and continuous monitoring. Simulations are conducted to observe the symptomatic and asymptomatic effects of Lung Cancer disease to verify the relationship of IL2, anti-PD-L1 inhibitor and immune system. Also identify the real situation of the control for lung cancer disease after detection and treatment by introducing IL2 cytokine and anti-PD-L1 inhibitor which helps to generate anti-cancer cells of the patients. Such type of investigation will be useful to investigate the spread of disease as well as helpful in developing control strategies from our justified outcomes.
Funder
Ministère de la Ville de la Jeunesse et des Sports
Publisher
Public Library of Science (PLoS)
Reference46 articles.
1. Introduction to mathematical biology;CS Chou,2016
2. Mathematical modeling of cancer metabolism;MÁ Medina;Critical reviews in oncology/hematology,2018
3. Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition;N Bellomo;Mathematical Models and Methods in Applied Sciences,2004
4. Mathematical models of avascular tumor growth;T Roose;SIAM Review,2007
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献