Leveraging transfer learning with deep learning for crime prediction

Author:

Butt Umair MuneerORCID,Letchmunan Sukumar,Hassan Fadratul Hafinaz,Koh Tieng Wei

Abstract

Crime remains a crucial concern regarding ensuring a safe and secure environment for the public. Numerous efforts have been made to predict crime, emphasizing the importance of employing deep learning approaches for precise predictions. However, sufficient crime data and resources for training state-of-the-art deep learning-based crime prediction systems pose a challenge. To address this issue, this study adopts the transfer learning paradigm. Moreover, this study fine-tunes state-of-the-art statistical and deep learning methods, including Simple Moving Averages (SMA), Weighted Moving Averages (WMA), Exponential Moving Averages (EMA), Long Short Term Memory (LSTM), Bi-directional Long Short Term Memory (BiLSTMs), and Convolutional Neural Networks and Long Short Term Memory (CNN-LSTM) for crime prediction. Primarily, this study proposed a BiLSTM based transfer learning architecture due to its high accuracy in predicting weekly and monthly crime trends. The transfer learning paradigm leverages the fine-tuned BiLSTM model to transfer crime knowledge from one neighbourhood to another. The proposed method is evaluated on Chicago, New York, and Lahore crime datasets. Experimental results demonstrate the superiority of transfer learning with BiLSTM, achieving low error values and reduced execution time. These prediction results can significantly enhance the efficiency of law enforcement agencies in controlling and preventing crime.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3