Serum proteomic profile of wild stump-tailed macaques (Macaca arctoides) infected with malaria parasites in Thailand

Author:

Ruengket Pakorn,Roytrakul SittirukORCID,Tongthainan Daraka,Taruyanon Kanokwan,Sangkharak Bencharong,Limudomporn Paviga,Pongsuchart MongkolORCID,Udom Chanya,Fungfuang WirasakORCID

Abstract

The number of patients infected with simian malaria is gradually increasing in many countries of Southeast Asia and South America. The most important risk factor for a zoonotic spillover event of malarial infection is mostly influenced by the interaction between humans, monkeys, and vectors. In this study, we determine the protein expression profile of a wild stump-tailed macaque (Macaca arctoides) from a total of 32 blood samples collected from Prachuap Kiri Khan Province, Thailand. The malarial parasite was analyzed using nested polymerase chain reaction (PCR) assays by dividing the samples into three groups: non-infected, mono-infected, and multiple-infected. The identification and differential proteomic expression profiles were determined using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and bioinformatics tools. A total of 9,532 proteins (total proteins) were identified with the filter-based selection methods analysis, and a subset of 440 proteins were found to be different between each group. Within these proteins, the GhostKOALA functional enrichment analysis indicated that 142 important proteins were associated with either of the organismal system (28.87%), genetic information processing (23.24%), environmental information processing (16.20%), metabolism (13.38%), cellular processes (11.97%), or causing human disease (6.34%). Additionally, using interaction network analysis, nine potential reporter proteins were identified. Here, we report the first study on the protein profiles differentially expressed in the serum of wild stump-tailed macaques between non, mono, and multiple malarial infected living in a natural transmission environment. Our findings demonstrate that differentially expressed proteins implicated in host defense through lipid metabolism, involved with TGF pathway were suppressed, while those with the apoptosis pathway, such as cytokines and proinflammation signals were increased. Including the parasite’s response via induced hemolysis and disruption of myeloid cells. A greater understanding of the fundamental processes involved in a malarial infection and host response can be crucial for developing diagnostic tools, medication development, and therapies to improve the health of those affected by the disease.

Funder

Kasetsart University Research and Development Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference100 articles.

1. Malaria—an overview;R. Tuteja;The FEBS Journal,2007

2. Parasite-Host Interaction and Pathophysiology Studies of the Human Relapsing Malarias Plasmodium vivax and Plasmodium ovale Infections in Non-Human Primates;EM Pasini;Frontiers in Cellular and Infection Microbiology,2021

3. World Health Organization. World Malaria Report 2021.

4. Zoonotic malaria transmission and land use change in Southeast Asia: what is known about the vectors;B van de Straat;Malaria Journal,2022

5. Zoonotic malaria—global overview and research and policy needs;R. Ramasamy;Front Public Health,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3