Combining finite element and reinforcement learning methods to design superconducting coils of saturated iron-core superconducting fault current limiter in the DC power system

Author:

Kim Chang Soon,Dao Van QuanORCID,Park Jinje,Jang Byungho,Lee Seok-JuORCID,Park Minwon

Abstract

A saturated iron-core type superconducting fault current limiter (SI-SFCL) can effectively restrict the magnitude of the fault current and alleviate the strain on circuit breakers in DC power systems. Design of a superconducting coil (SC), which is one of the key tasks in the SI-SFCL design, requires guaranteeing a sufficient magnetic field, ensuring optimization of the shape and size, minimizing the wire cost, and satisfying the safety and stability of operation. Generally, finite element method (FEM) is used to calculate and evaluate the operating characteristics of SCs, from which it is possible to determine their optimal design parameters. When the coil is complex and large, the simulation time may range from hours to days, and if input parameters change even slightly, the simulations have to be redone from scratch. Recent advances in deep learning represent the ability to be effective for modeling and optimizing complex problems from training data or in real-time. In this paper, we presented a combination of the FEM simulation and deep Q-network (DQN) algorithm to optimize the SC design of a lab-scale SI-SFCL for a DC power system. The detailed design process and options for the SC of SI-SFCL were proposed. In order to analyze the characteristics related to the electromagnetic properties and operational features of the SC, a 3D FEM model was developed. Then, a DQN model was constructed and integrated with the FEM simulation for training and optimizing the design parameters of the SC in real-time. The obtained results of this study have the potential to effectively optimize the design parameters of large-scale SI-SFCL development for high-voltage DC power systems.

Funder

Ministry of SMEs and Startups

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3