SSC: The novel self-stack ensemble model for thyroid disease prediction

Author:

Ji ShengjunORCID

Abstract

Thyroid disease presents a significant health risk, lowering the quality of life and increasing treatment costs. The diagnosis of thyroid disease can be challenging, especially for inexperienced practitioners. Machine learning has been established as one of the methods for disease diagnosis based on previous studies. This research introduces a novel and more effective technique for predicting thyroid disease by utilizing machine learning methodologies, surpassing the performance of previous studies in this field. This study utilizes the UCI thyroid disease dataset, which consists of 9172 samples and 30 features, and exhibits a highly imbalanced target class distribution. However, machine learning algorithms trained on imbalanced thyroid disease data face challenges in reliably detecting minority data and disease. To address this issue, re-sampling is employed, which modifies the ratio between target classes to balance the data. In this study, the down-sampling approach is utilized to achieve a balanced distribution of target classes. A novel RF-based self-stacking classifier is presented in this research for efficient thyroid disease detection. The proposed approach demonstrates the ability to diagnose primary hypothyroidism, increased binding protein, compensated hypothyroidism, and concurrent non-thyroidal illness with an accuracy of 99.5%. The recommended model exhibits state-of-the-art performance, achieving 100% macro precision, 100% macro recall, and 100% macro F1-score. A thorough comparative assessment is conducted to demonstrate the viability of the proposed approach, including several machine learning classifiers, deep neural networks, and ensemble voting classifiers. The results of K-fold cross-validation provide further support for the efficacy of the proposed self-stacking classifier.

Funder

Xi’an University of Finance and Economics

Publisher

Public Library of Science (PLoS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3