Extended Kalman Filter design for sensorless sliding mode predictive control of induction motors without weighting factor: An experimental investigation

Author:

Chebaani Mohamed,Mahmoud Mohamed MetwallyORCID,Tazay Ahmad F.,Mosaad Mohamed I.,Nouraldin Noura A.

Abstract

Due to their simplicity, cheapness, and ease of maintenance, induction motors (IMs) are the most widely used motors in the industry. However, if they are not properly controlled, the load torque and motor speed will fluctuate in an unsatisfactory fashion. To effectively control the load torque and speed of these IMs, it is necessary to use specialized drives. The entire system (IMs + Drives) will experience uncertainty, nonlinearities, and disruptions, which calls for an outstanding performance control structure. The sensorless sliding mode predictive torque control (SSM-PTC) for both AC-DC converter and DC-AC inverter, which are utilized for feeding the IM, is investigated in this work. The AC-DC converter is controlled using the SSM-PTC method in order to follow the DC-link reference voltage throughout any changes in the operating point of the IM. While the DC-AC inverter is controlled using a sensorless predictive power control (SPPC). Within a unity power factor, this SPPC regulates the reactive power flow between the motor and the supply to account for the undesirable harmonic components of the grid current. In addition, an experimental performance improvement of SSM-PTC of IM supplied by a 5-leg AC-DC-AC power converter using extended Kalman filter (EKF) without weighting factor (WF) is also studied in this work. Design and implantation of the suggested control systems are performed using a dSPACE 1104 card. The experimental results of the proposed converter control demonstrate that the suggested approach effectively regulated the DC link, reducing load torque and speed fluctuations. In the context of inverter control, a prompt active power response yields a motor current waveform that resembles a sinusoidal pattern, exhibiting minimal levels of harmonic distortion.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. Analysis of the Control System for a Soft Starter of an Induction Motor Based on a Multi-Zone AC Voltage Converter;E. Kosykh;Electron.,2023

2. A new method for controlling an induction motor using a hybrid discretization model predictive field orientated control;H. Alqaraghuli;PLoS One,2022

3. Experimental Investigation of Decoupled Discontinuous PWM Strategies in Open-End Winding Induction Motor Supplied by a Common DC-Link;M. Zerdani;IEEE J. Emerg. Sel. Top. Power Electron.,2023

4. Improved current control loops in wind side converter with the support of wild horse optimizer for enhancing the dynamic performance of PMSG-based wind generation system;M. Metwally Mahmoud;Int. J. Model. Simul.,2022

5. Robust stator flux and load torque estimations for induction motor drives with EKF-based observer;R. Demir;Electr. Eng.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3