Modeling forest landscape futures: Full scale simulation of realistic socioeconomic scenarios in Estonia

Author:

Kaasik AntsORCID,Kont Raido,Lõhmus AskoORCID

Abstract

For political and administrative governance of land-use decisions, high-resolution and reliable spatial models are required over large areas and for various time horizons. We present a process-centered simulation model ‘NextStand’ (a forest landscape model, FLM) and its R-script, which predicts regional forest characteristics at a forest stand resolution. The model uses whole area stand data and is optimized for realistic iterative timber harvesting decisions, based on stand compositions (developing over time) and locations. We used the model for simulating spatial predictions of the Estonian forests in North Europe (2.3 Mha, about 2 M stands); the decisions were parameterized by land ownership, protection regimes, and rules of clear-cut harvesting. We illustrate the model application as a potential broad-scale Decision Support Tool by predicting how the forest age composition, placement of clear-cut areas, and connectivity of old stands will develop until the year 2050 under future scenarios. The country-scale outputs had a generally low within-scenario variance, which enabled to estimate some main land-use effects and uncertainties at small computing efforts. In forestry terms, we show that a continuation of recent intensive forest management trends will produce a decline of the national timber supplies in Estonia, which greatly varies among ownership types. In a conservation perspective, the current level of 13% forest area strictly protected can maintain an overall area of old forests by 2050, but their isolation is a problem for biodiversity conservation. The behavior of low-intensity forest management units (owners) and strict governance of clear-cut harvesting rules emerged as key questions for regional forest sustainability. Our study confirms that high-resolution modeling of future spatial composition of forest land is feasible when one can (i) delineate predictable spatial units of transformation (including management) and (ii) capture their variability of temporal change with simple ecological and socioeconomic (including human decision-making) variables.

Funder

Eesti Keskkonnaamet (Environmental Board)

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference73 articles.

1. The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models.;SR Shifley;Landscape Ecol.,2017

2. Climate targets in European timber-producing countries conflict with goals on forest ecosystem services and biodiversity.;C Blattert;Commun Earth Environ,2023

3. Understanding and modeling forest disturbance interactions at the landscape level.;BR Sturtevant;Front Ecol Evol,2021

4. Latest trends in modelling forest ecosystems: New approaches or just new methods?;JA Blanco;Curr Forestry Rep.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3