Jagged 2 inhibition attenuates hypoxia-induced mitochondrial damage and pulmonary hypertension through Sirtuin 1 signaling

Author:

Liu Hanhan,Pan Zhou,Wu Xiaofeng,Gong Cheng,Hu JunboORCID

Abstract

Notch pathway has played a significant role in the pathophysiology of pulmonary hypertension (PH). However, the role of Jagged 2 (Jag2), one ligand of Notch, remains to be elucidated.Therefore, determining the contribution of Jag2 to PH and its impact on pulmonary artery smooth muscle cells (PASMCs) was the aim of this investigation. Adeno-associated virus-mediated Jag2 inhibition was used to explore the role of Jag2 in peripheral pulmonary vascular remodeling assessed in a rat model of chronic hypoxia (10% O2, 4 weeks) induced pulmonary hypertension. In vitro, the effect of Jag2 silencing on hypoxia (1% O2, 24h) induced rat PASMCs was determined. Group differences were assessed using a 2-sided unpaired Student’s t-test for two groups and one-way ANOVA for multiple groups. Jag2 upregulation was first confirmed in rats with sustained hypoxia-induced PH using publicly available gene expression data, experimental PH rat models and hypoxia induced rat PASMCs. Jag2 deficiency decreased oxidative stress injury, peripheral pulmonary vascular remodeling (0.276±0.020 vs. 0.451±0.033 μm, P<0.001, <50μm), and right ventricular systolic pressure (36.8±3.033 vs. 51.8±4.245 mmHg, P<0.001) in the chronic hypoxia-induced rat model of PH. Moreover, Jag2 knockdown decreased proliferation (1.227±0.051 vs. 1.45±0.07, P = 0.012), increased apoptosis (16.733%±0.724% vs. 6.56%±0.668%, P<0.001), and suppressed mitochondrial injury in hypoxia–treated rat PASMCs. Jag2 inhibition restored the activity of the Nrf2/HO-1 pathway, which was abolished by Sirtuin 1 deficiency. These findings show that Jag2 is essential for modulating pulmonary vascular dysfunction and accelerating PH, and that inhibition of Jag2 expression suppresses the progression and development of PH.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. Pulmonary hypertension and right heart dysfunction in chronic lung disease;A Zangiabadi;Biomed Res Int,2014

2. Impact of increased hematocrit on right ventricular afterload in response to chronic hypoxia;DA Schreier;J Appl Physiol (1985),2014

3. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine;KJ Dunham-Snary;Chest,2017

4. O2 sensing, mitochondria and ROS signaling: The fog is lifting;GB Waypa;Molecular aspects of medicine,2016

5. Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Injury via Attenuation of ROS-Mediated Ca(2+) Overload and Mitochondrial Dysfunction in Human Bronchial Epithelial Cells;CX Liu;Biomed Res Int,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3