Amylase production from marine sponge Hymeniacidon perlevis; potentials sustainability benefits

Author:

Nnaji Praise TochukwuORCID,Adukwu Emmanuel,Morse H. RuthORCID,Chidugu-Ogborigbo Rachael U.ORCID

Abstract

The marine sponge Hymeniacidon perlevis is a globally distributed and invasive species with extensive filter-feeding characteristics. The symbiotic relationship fostered between the sea sponge and the inhabiting microorganism is key in the production of metabolic enzymes which is the focus of this study. Sponge bacterial symbionts were grown on starch agar for 48hrs. Colourimetric analyses of amylase were conducted at 540nm using a spectrophotometric plate reader. Using an X-Bridge column (3.5μM, 4.6x150mm), 80/20 acetonitrile/water in 0.1% ammonium were the conditions used for the liquid chromatography-mass spectrometry (LC-MS) analyses. Seven reducing sugars were used to optimise LC-MS to determine the presence of the crude enzyme formed. Not all the bacterial symbionts isolated from H perlevis produced alpha and beta amylases to break down starch. From the statistical mean of crude enzyme concentrations from the hydrolysis of starch by amylase, isolate seven had the highest optical density (OD) at 0.43475 while isolate twelve had the lowest OD at 0.141417. From the LC-MS analysis, out of the seven sugars, Glucose and maltose constituted > 65% of the reducing sugars formed from the hydrolysis of starch by the amylases. Isolates 3,6 and 7 produced 6.906 mg/l, 12.309 mg/l, and 5.909 mg/l of glucose, while isolates 3,4,5,6 and 7 produced 203.391 mg/l, 176.238 mg/l, 139.938 mg/l, 39.030 mg/l, and 18.809 mg/l of maltose, respectively. Isolate two had the highest amount of maltose at a concentration of 267.237 mg/l while isolate four had the highest amount of glucose concentration of 53.084 mg/l. Enzymes from marine sponge bacteria offer greater potential for a green and sustainable production process. Amylase extraction from bacterial symbionts in H perlevis is sustainable and should be supported. They can serve as reliable sources of revenue for enzyme industries, and applications in food industries and biotechnological processes.

Funder

University of the West of England

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Molecular identification of a newly isolated Bacillus subtilis BI19 and optimization of production conditions for enhanced production of extracellular amylase;BK Dash;BioMed Research International,2015

2. Microbial β-amylases: biosynthesis, characteristics, and industrial applications;RR Ray;Critical reviews in microbiology,1996

3. α-amylase production and applications: a review;A Sundarram;Journal of Applied & Environmental Microbiology,2014

4. α-Amylases of medical and industrial importance;L. Kandra;Journal of Molecular Structure: THEOCHEM,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3