Novel ensemble learning approach with SVM-imputed ADASYN features for enhanced cervical cancer prediction

Author:

Munshi Raafat M.ORCID

Abstract

Cervical cancer remains a leading cause of female mortality, particularly in developing regions, underscoring the critical need for early detection and intervention guided by skilled medical professionals. While Pap smear images serve as valuable diagnostic tools, many available datasets for automated cervical cancer detection contain missing data, posing challenges for machine learning models’ efficacy. To address these hurdles, this study presents an automated system adept at managing missing information using ADASYN characteristics, resulting in exceptional accuracy. The proposed methodology integrates a voting classifier model harnessing the predictive capacity of three distinct machine learning models. It further incorporates SVM Imputer and ADASYN up-sampled features to mitigate missing value concerns, while leveraging CNN-generated features to augment the model’s capabilities. Notably, this model achieves remarkable performance metrics, boasting a 99.99% accuracy, precision, recall, and F1 score. A comprehensive comparative analysis evaluates the proposed model against various machine learning algorithms across four scenarios: original dataset usage, SVM imputation, ADASYN feature utilization, and CNN-generated features. Results indicate the superior efficacy of the proposed model over existing state-of-the-art techniques. This research not only introduces a novel approach but also offers actionable suggestions for refining automated cervical cancer detection systems. Its impact extends to benefiting medical practitioners by enabling earlier detection and improved patient care. Furthermore, the study’s findings have substantial societal implications, potentially reducing the burden of cervical cancer through enhanced diagnostic accuracy and timely intervention.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference63 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;F Bray;CA: a cancer journal for clinicians,2018

2. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis;M Arbyn;The Lancet Global Health,2020

3. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy;A Pal;Frontiers in microbiology,2020

4. Inception v3 based cervical cell classification combined with artificially extracted features;N Dong;Applied Soft Computing,2020

5. Cervical precancerous lesions classification using pre-trained densely connected convolutional networks with colposcopy images;T Zhang;Biomedical signal processing and control,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3