Mesoscopic analysis of drag reduction performance of bionic furrow opener based on the discrete element method

Author:

Liu Guomin,Yao Jiuyuan,Chen Zhen,Han Xuekai,Zou MengORCID

Abstract

In order to study the dynamic interface mechanical behavior between soil and agricultural machinery and reveal the causes of tillage resistance, three kinds of bionic furrow opener were designed according to the characteristics of earthworm head surface curve, using the discrete element method to simulate and analyze the process of the furrow openers. The results showed that the order of ditching resistance from large to small is traditional opener, bionic corrugated opener, bionic ridgeline opener, bionic composite opener. With the same ditching speed, the drag reduction effect of the three bionic openers increases with the increase of the ditching depth. During the process of increasing the depth from 30 mm to 60 mm and 90 mm, the ditching resistance of the traditional opener increased from 11.56 N to 28.32 N and 48.61 N as well as the maximum drag reduction ratio increased from 5.58% to 7.20% and 8.93% for the bionic composite opener. With the same ditching depth, the bionic composite opener reached the highest drag reduction rate of all bionic openers when the speed is 100 mm/s, the value is 9.08%. The width of the ditch of the three bionic openers is smaller than that of the traditional opener. Bionic corrugated opener can improve the ditch height and reduce the ditch width,the corrugated structure creates a gap between the surface of the core and the particles, reducing the number of contact and contact area of the particles. The number of contact particles of the three bionic openers is smaller than that of the traditional opener. The bionic composite opener has the smallest force field and the soil disturbance caused by the core share surface is small, the soil is evenly distributed along the core surface. The discrete element simulation shows that the bionic opener can effectively reduce the ditching resistance and improve the quality of ditching, which provides a theoretical basis for subsequent research and optimization.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3