Fine-tuning TrailMap: The utility of transfer learning to improve the performance of deep learning in axon segmentation of light-sheet microscopy images

Author:

Oostrom MarjoleinORCID,Muniak Michael A.ORCID,Eichler West Rogene M.,Akers Sarah,Pande Paritosh,Obiri Moses,Wang Wei,Bowyer Kasey,Wu Zhuhao,Bramer Lisa M.ORCID,Mao Tianyi,Webb-Robertson Bobbie Jo M.ORCID

Abstract

Light-sheet microscopy has made possible the 3D imaging of both fixed and live biological tissue, with samples as large as the entire mouse brain. However, segmentation and quantification of that data remains a time-consuming manual undertaking. Machine learning methods promise the possibility of automating this process. This study seeks to advance the performance of prior models through optimizing transfer learning. We fine-tuned the existing TrailMap model using expert-labeled data from noradrenergic axonal structures in the mouse brain. By changing the cross-entropy weights and using augmentation, we demonstrate a generally improved adjusted F1-score over using the originally trained TrailMap model within our test datasets.

Funder

National Institute of Mental Health

National Institute of Neurological Disorders and Stroke

Publisher

Public Library of Science (PLoS)

Reference32 articles.

1. The human connectome: a complex network;O. Sporns;Annals of the new York Academy of Sciences,2011

2. From the connectome to brain function;CI Bargmann;Nature methods,2013

3. Neural networks of the mouse neocortex;B Zingg;Cell,2014

4. Light sheet fluorescence microscopy: a review. Journal of Histochemistry &;PA Santi;Cytochemistry,2011

5. The light-sheet microscopy revolution;JM Girkin;Journal of Optics,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3