Development of combined hypersonic test facility for aerothermodynamic testing

Author:

Yang Sungmo,Choi Ilsung,Park GisuORCID

Abstract

In this study, a combined test facility was developed using a combination of an arc-jet tunnel and a shock tunnel for aerothermodynamic testing. The performance validation of individual parts was performed, and results were obtained from the combined test. A small-scale Huels-type arc-jet tunnel was used to preheat the test model by aerodynamic heating before conducting the experiments in the shock tunnel to duplicate the hot surfaces of flight objects encountered during hypersonic flight. The high-enthalpy flow in the arc-jet tunnel provided a heat flux of 1.99±0.03 MW/m2 for a flat-faced model of 10 mm diameters, and the flow condition of the shock tunnel used in this study simulated a Mach 5 flight at a pressure altitude of about 24 km. The two combined experiments employing different shape and material models were carried out to examine the effect of aerothermodynamic phenomena. In the first experiment, the effect of ablation-induced shape change on the fluid-structure was investigated using a cone model manufactured of AL6061 material. The effect of surface roughness on the fluid-structure was examined in the second experiment, which used a hemisphere model constructed of STS303 material. Although substantial findings could not be validated due to the limits of qualitative evaluations utilizing visualization methods, however preheating-related changes in surface roughness were found. As a follow-up study, a force measuring experiment based on the test procedures is being carried out at this facility utilizing a preheated model with an accelerometer. The performance and experimental results obtained using this integrated setup are discussed in detail, highlighting the potential of this combined hypersonic test facility.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3