A prediction method of fire frequency: Based on the optimization of SARIMA model

Author:

Ma ShuqiORCID,Liu Qianyi,Zhang Yudong

Abstract

In the current study, based on the national fire statistics from 2003 to 2017, we analyzed the 24-hour occurrence regularity of fire in China to study the occurrence regularity and influencing factors of fire and provide a reference for scientific and effective fire prevention. The results show that the frequency of fire is low from 0 to 6 at night, accounting for about 13.48%, but the death toll due to fire is relatively high, accounting for about 39.90%. Considering the strong seasonal characteristics of the time series of monthly fire frequency, the SARIMA model predicts the fire frequency. According to the characteristics of time series data and prediction results, an optimized Seasonal Autoregressive Integrated Moving Average Model (SARIMA) model based on Quantile outlier detection method and similar mean interpolation method is proposed, and finally, the optimal model is constructed as SARIMA (1,1,1) (1,1,1) 12 for prediction. The results show that: according to the optimized SARIMA model to predict the number of fires in 2018 and 2019, the root mean square error of the fitting results is 2826.93, which is less than that of the SARIMA model, indicating that the improved SARIMA model has a better fitting effect. The accuracy of the results is increased by 11.5%. These findings verified that the optimized SARIMA model is an effective improvement for the series with quantile outliers, and it is more suitable for the data prediction with seasonal characteristics. The research results can better mine the law of fire aggregation and provide theoretical support for fire prevention and control work of the fire department.

Funder

National Key R&D Program of China

the basic research funds of capital university of economics and business

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference21 articles.

1. Problems and Countermeasures of fire safety management in Enterprises;Li Tao;Management and technology of small and medium sized enterprises,2009

2. Analysis of causes and characteristics of conflagrations from 1993 to 2003 in China;YG Chen;Journal of Safety and Environment,2006

3. An Integraed Fuzzy Regession Algorithm for Energy Consumption Estimation with Non-stationary Data: A Case Study of Iran;A Azadeh;Energy,2010

4. Short-term Photovoltaic Power Forecasting Using Artificial Neural Networks and an Analog Ensemble;G Cervone;Renewable Energy,2017

5. Study on model about forest fire forecast and prediction based on GIS;AJ Xu;Journal of Zhejiang Forestry College,2003

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3