Abstract
In recent years, advancements in Internet and cloud technologies have led to a significant increase in electronic trading in which consumers make online purchases and transactions. This growth leads to unauthorized access to users’ sensitive information and damages the resources of an enterprise. Phishing is one of the familiar attacks that trick users to access malicious content and gain their information. In terms of website interface and uniform resource locator (URL), most phishing webpages look identical to the actual webpages. Various strategies for detecting phishing websites, such as blacklist, heuristic, Etc., have been suggested. However, due to inefficient security technologies, there is an exponential increase in the number of victims. The anonymous and uncontrollable framework of the Internet is more vulnerable to phishing attacks. Existing research works show that the performance of the phishing detection system is limited. There is a demand for an intelligent technique to protect users from the cyber-attacks. In this study, the author proposed a URL detection technique based on machine learning approaches. A recurrent neural network method is employed to detect phishing URL. Researcher evaluated the proposed method with 7900 malicious and 5800 legitimate sites, respectively. The experiments’ outcome shows that the proposed method’s performance is better than the recent approaches in malicious URL detection.
Publisher
Public Library of Science (PLoS)
Reference25 articles.
1. Anti-Phishing Working Group (APWG), https://docs.apwg.org//reports/apwg_trends_report_q4_2019.pdf
2. PHISH-SAFE: URL Features-Based Phishing Detection System Using Machine Learning;A.K. Jain;Cyber Security. Advances in Intelligent Systems and Computing,2018
3. Split Behavior of Supervised Machine Learning Algorithms for Phishing URL Detection;M Purbay;Lecture Notes in Electrical Engineering,2021
4. Hung Le, Quang Pham, Doyen Sahoo, and Steven C.H. Hoi, “URLNet: Learning a URL Representation with Deep Learning for Malicious URL Detection”, Conference’17, Washington, DC, USA, arXiv:1802.03162, July 2017.
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献