Automated monitoring of respiratory rate as a novel humane endpoint: A refinement in mouse metastatic lung cancer models

Author:

Winn Caroline B.,Hwang Seo-KyoungORCID,Morin Jeffrey,Bluette Crystal T.,Manickam Balasubramanian,Jiang Ziyue K.,Giddabasappa Anand,Liu Chang-NingORCID,Matthews Kristin

Abstract

In oncology research, while xenograft tumor models are easily visualized and humane endpoints can be clearly defined, metastatic tumor models are often based on more subjective clinical observations as endpoints. This study aimed at identifying objective non-invasive criteria for predicting imminent distress and mortality in metastatic lung tumor-bearing mice. BALB/c and C57BL/6 mice were inoculated with CT26 or B16F10 cells, respectively. The mice were housed in Vium smart cages to continuously monitor and stream respiratory rate and locomotion for up to 28 days until scheduled euthanasia or humane endpoint criteria were met. Body weight and body temperature were measured during the study. On days 11, 14, 17 and 28, lungs of subsets of animals were microCT imaged in vivo to assess lung metastasis progression and then euthanized for lung microscopic evaluations. Beginning at day 21, most tumor-bearing animals developed increased respiratory rates followed by decreased locomotion 1–2 days later, compared with the baseline values. Increases in respiratory rate did not correlate to surface tumor nodule counts or lung weight. Body weight measurement did not show significant changes from days 14–28 in either tumor-bearing or control animals. We propose that increases in respiratory rate (1.3–1.5 X) can be used to provide an objective benchmark to signal the need for increased clinical observations or euthanasia. Adoption of this novel humane endpoint criterion would allow investigators time to collect tissue samples prior to spontaneous morbidity or death and significantly reduce the distress of mice in the terminal stages of these metastatic lung tumor models.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery;BA Ruggeri;Biochem Pharmacol,2014

2. Humane endpoints and cancer research;J Wallace;ILAR J,2000

3. A systematic approach for establishing humane endpoints;DB Morton;ILAR J,2000

4. Endpoints for mouse abdominal tumor models: refinement of current criteria;EV Paster;Comp Med,2009

5. Technical considerations for studying cancer metastasis in vivo;DR Welch;Clin Exp Metastasis,1997

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3