Development of a novel ALK rearrangement screening test for non–small cell lung cancers

Author:

Chen Yi-Lin,Chen Wan-Li,Cheng Yi-Chia,Lin Ming-Ching,Yang Shu-Ching,Tsai Hung-Wen,Lin Chien‐Chung,Su Wu-Chou,Chow Nan-Haw,Ho Chung-Liang

Abstract

Approximately 5–7% of non–small cell lung cancer (NSCLC) cases harbor an anaplastic lymphoma kinase (ALK) fusion gene and may benefit from ALK inhibitor therapy. To detect ALK fusion genes, we developed a novel test using reverse transcription polymerase chain reaction (RT-PCR) for the ALK kinase domain (KD). Since ALK expression is mostly silenced in the adult with the exception of neuronal tissue, the normal lung tissue, mesothelial lining, and inflammatory cells are devoid of ALK transcript, making ALK KD RT-PCR an ideal surrogate test for ALK fusion transcripts in lung or pleural effusion. The test was designed with a short PCR product (197 bp) to work for both malignant pleural effusion (MPE) and formalin-fixed, paraffin-embedded (FFPE) NSCLC samples. Using ALK IHC as a reference, the sensitivity of the test was 100% for both MPE and FFPE. The specificity was 97.6% for MPE and 97.4% for FFPE. Two false positive cases were found. One was a metastatic brain lesion which should be avoided in the future due to intrinsic ALK expression in the neuronal tissue. The other one resulted from ALK gene amplification. Due to potential false positivity, subsequent confirmation tests such as fluorescence in situ hybridization or multiplex PCR would be preferable. Nevertheless, the test is simple and inexpensive with no false negativity, making it a desirable screening test. It also offers an advantage over multiplex RT-PCR with the capability to detect novel ALK fusions. Indeed through the screening test, we found a novel ALK fusion partner (sperm antigen with calponin homology and coiled-coil domains 1 like gene, SPECC1L) with increased sensitivity to crizotinib in vitro. In summary, a novel RNA-based ALK KD analysis was developed for ALK rearrangement screening in MPE and FFPE specimens of NSCLC. This simple inexpensive test can be implemented as routine diagnostics.

Funder

ministry of science and technology, taiwan

national cheng kung university hospital

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3