Belowground productivity varies by assessment technique, vegetation type, and nutrient availability in tidal freshwater forested wetlands transitioning to marsh

Author:

From Andrew S.,Krauss Ken W.ORCID,Noe Gregory B.,Cormier Nicole,Stagg Camille L.,Moss Rebecca F.,Whitbeck Julie L.ORCID

Abstract

Wetlands along upper estuaries are characterized by dynamic transitions between forested and herbaceous communities (marsh) as salinity, hydroperiod, and nutrients change. The importance of belowground net primary productivity (BNPP) associated with fine and coarse root growth also changes but remains the dominant component of overall productivity in these important blue carbon wetlands. Appropriate BNPP assessment techniques to use in various tidal wetlands are not well-defined, and could make a difference in BNPP estimation. We hypothesized that different BNPP techniques applied among tidal wetlands differ in estimation of BNPP and possibly also correlate differently with porewater nutrient concentrations. We compare 6-month and 12-month root ingrowth, serial soil coring techniques utilizing two different calculations, and a mass balance approach (TBCA, Total Belowground Carbon Allocation) among four tidal wetland types along each of two river systems transitioning from freshwater forest to marsh. Median values of BNPP were 266 to 2946 g/m2/year among all techniques used, with lower BNPP estimation from root ingrowth cores and TBCA (266–416 g/m2/year), and higher BNPP estimation from serial coring of standing crop root biomass (using Smalley and Max-Min calculation methods) (2336–2946 g/m2/year). Root turnover (or longevity) to a soil depth of 30 cm was 2.2/year (1.3 years), 2.7/year (1.1 years), 4.5/year (0.9 years), and 1.2/year (2.6 years), respectively, for Upper Forest, Middle Forest, Lower Forest, and Marsh. Marsh had greater root biomass and BNPP, with slower root turnover (greater root longevity) versus forested wetlands. Soil porewater concentrations of NH3 and reactive phosphorus stimulated BNPP in the marsh when assessed with short-deployment BNPP techniques, indicating that pulses of mineralized nutrients may stimulate BNPP to facilitate marsh replacement of forested wetlands. Overall, ingrowth techniques appeared to represent forested wetland BNPP adequately, while serial coring may be necessary to represent herbaceous plant BNPP from rhizomes as marshes replace forested wetlands.

Funder

U.S. Geological Survey

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3