Identification and functional analysis of a galactosyltransferase capable of cholesterol glycolipid formation in the Lyme disease spirochete Borrelia burgdorferi

Author:

Hove Petronella R.ORCID,Magunda Forgivemore,de Mello Marques Maria Angela,Islam M. Nurul,Harton Marisa R.,Jackson Mary,Belisle John T.

Abstract

Borrelia burgdorferi (Bb), the etiological agent of Lyme disease, produces a series of simple glycolipids where diacylglycerol and cholesterol serve as the precursor. The cholesterol-based glycolipids, cholesteryl 6-O-acyl-β-D-galactopyranoside (ACGal) and cholesteryl-β-D-galactopyranoside (CGal) are immunogenic and proposed to contribute to the pathogenesis of Lyme disease. Detailed studies of CGal and ACGal in Bb have been hampered by a lack of knowledge of their underlying biosynthetic processes. The genome of Bb encodes four putative glycosyltransferases, and only one of these, BB0572, was predicted to be an inverting family 2 glycosyltransferase (GT2 enzyme) capable of using UDP-galactose as a substrate and forming a β-glycosidic bond. Comparison of the 42 kDa BB0572 amino acid sequence from Bb with other Borrelia spp demonstrates that this protein is highly conserved. To establish BB0572 as the galactosyltransferase capable of cholesterol glycolipid formation in Bb, the protein was produced as a recombinant product in Escherichia coli and tested in a cell-free assay with 14C-cholesterol and UDP-galactose as the substrates. This experiment resulted in a radiolabeled lipid that migrated with the cholesterol glycolipid standard of CGal when evaluated by thin layer chromatography. Additionally, mutation in the predicted active site of BB0572 resulted in a recombinant protein that was unable to catalyze the formation of the cholesterol glycolipid. These data characterize BB0572 as a putative cholesterol galactosyltransferase. This provides the first step in understanding how Bb cholesterol glycolipids are formed and will allow investigations into their involvement in pathogen transmission and disease development.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference66 articles.

1. Lyme borreliosis;G Stanek;The Lancet,2003

2. The emergence of Lyme disease;AC Steere;Journal of Clinical Investigation,2004

3. Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses;FT Liang;Infection and immunity,2004

4. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria;Z Huang;Chemistry and physics of lipids,2016

5. A newly discovered cholesteryl galactoside from Borrelia burgdorferi;G Ben-Menachem;Proceedings of the National Academy of Sciences,2003

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3