Multilevel geospatial analysis of factors associated with unskilled birth attendance in Ghana

Author:

Bediako Vincent BioORCID,Boateng Ebenezer N. K.ORCID,Owusu Bernard Afriyie,Dickson Kwamena Sekyi

Abstract

Background Globally, about 810 women die every day due to pregnancy and its related complications. Although the death of women during pregnancy or childbirth has declined from 342 deaths to 211 deaths per 100,000 live births between 2000 and 2017, maternal mortality is still higher, particularly in sub-Saharan Africa and South Asia, where 86% of all deaths occur. Methods A secondary analysis was carried out using the 2014 Ghana Demographic and Health Survey. A sample total of 4,290 women who had a live birth in the 5 years preceding the survey was included in the analysis. GIS software was used to explore the spatial distribution of unskilled birth attendance in Ghana. The Geographic Weighted Regression (GWR) was employed to model the spatial relationship of some predictor of unskilled birth attendance. Moreover, a multilevel binary logistic regression model was fitted to identify factors associated with unskilled birth attendance. Results In this study, unskilled birth attendance had spatial variations across the country. The hotspot, cluster and outlier analysis identified the concerned districts in the north-eastern part of Ghana. The GWR analysis identified different predictors of unskilled birth attendance across districts of Ghana. In the multilevel analysis, mothers with no education, no health insurance coverage, and mothers from households with lower wealth status had higher odds of unskilled birth attendance. Being multi and grand multiparous, perception of distance from the health facility as not a big problem, urban residence, women residing in communities with medium and higher poverty level had lower odds of unskilled birth attendance. Conclusion Unskilled birth attendance had spatial variations across the country. Areas with high levels of unskilled birth attendance had mothers who had no formal education, not health insured, mothers from poor households and communities, primiparous women, mothers from remote and border districts could get special attention in terms of allocation of resources including skilled human power, and improved access to health facilities.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. World Health Organization (WHO). Maternal mortality [Internet]. 2019 [cited 2021 Apr 2]. https://www.who.int/news-room/fact-sheets/detail/maternal-mortality.

2. UNICEF. Maternal and Newborn Health Disparities: Key Facts [Internet]. 2018 [cited 2021 Jan 22]. https://www.ghanahealthservice.org/downloads/NEWBORN0001.pdf.

3. Global causes of maternal death: A WHO systematic analysis;L Say;Lancet Glob Heal,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3